

Acknowledgements

This manuscript has been co-authored by UT-Battelle, LLC under Contract No. DE-AC05$000 R 22725$ with the U.S. Department of Energy. This project was partially funded by the Laboratory Director's Research and Development fund. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy.
This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Also, partial funding for this work was provided by AFOSR Grant FA9550-13-1-0100, National Science Foundation (NSF) grants IIS-1348152, ACI-1338745, ACI-1642410, and ACI-1642385, Defense Advanced Research Projects Agency (DARPA) XDATA program grant FA8750-12-2-0309. We also thank NSF for the travel grant to present this work in the conference through the grant CCF-1552229.
The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan http://energy.gov/downloads/doepublic-access-plan. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the USDOE, NERSC, AFOSR, NSF or DARPA.

Agenda

- Introduction and Motivation
- MPI-FAUN - Distributed NMF
- Alternating-Updating NMF(AUNMF)
- 1D Distribution
- 2D Distribution
- NTF
- Tensor Introduction and Operations
- Distributed NTF

Motivation

- Observed features/collected metrics/independent variable/predictor cannot explain the dependent variable/response/outcome variable
- Eg., temperature, humidity, precipitation, etc. are insufficient to explain the probability to rain
- It is impossible to collect all the features that explain an outcome
- Sometimes, statistically significant latent features contained in the factors offer explanation

NHOT Illustration: Hyper Spectral Image

http://www.harrisgeospatial.com/Portals/0/blogs/imageryspeaks/USGS\ PRISM/BlogPost Figure1.jpg
Lu G, Fei B; Medical hyperspectral imaging: a review. J. Biomed. Opt. 0001;19(1):010901. doi:10.1117/1.JB@ 21AOKOBA1DGE

Dimensionality Reduction in Scientific Data

- Multimodal characterization of materials comprehensive characterization from chemical composition to functional properties on the nanoscale

Example 1 : NMF vs. PCA

PCA Eigen vectors

Both PCA and NMF are insufficient

They do not consider the neighbourhood information
To consider this information, we use regularization

Example 2 : Video Data

Input Frame(A)

Background (WH)

Moving Object A - WH

* OAK RIDGE

National Laboratory

Matrix Factorization (MF)

Alternating Updating NMF (AUNMF)

Given A, find W, H such that $\min _{W \geq 0, H \geq 0}\|A-W H\|_{F}$ ANLS-BPP (Alternating NLS Block Principal Pivoting)

$$
\begin{aligned}
& \mathbf{W} \leftarrow \underset{\tilde{\mathbf{W}} \geqslant 0}{\operatorname{argmin}}\|\mathbf{A}-\tilde{\mathbf{W}} \mathbf{H}\|_{F}, \\
& \mathbf{H} \leftarrow \underset{\tilde{\mathbf{H}} \geqslant 0}{\operatorname{argmin}}\|\mathbf{A}-\mathbf{W} \tilde{\mathbf{H}}\|_{F} .
\end{aligned}
$$

HALS (Hierarchical Alternating Least Squares)

$$
\begin{aligned}
& \mathbf{w}^{i} \leftarrow\left[\mathbf{w}^{i}+\frac{\left(\mathbf{A} \mathbf{H}^{T}\right)^{i}-\mathbf{W}\left(\mathbf{H} \mathbf{H}^{T}\right)^{i}}{\left(\mathbf{H} \mathbf{H}^{T}\right)_{i i}}\right]_{+} \\
& \mathbf{h}_{i} \leftarrow\left[\mathbf{h}_{i}+\frac{\left(\mathbf{W}^{T} \mathbf{A}\right)_{i}-\left(\mathbf{W}^{T} \mathbf{W}\right)_{i} \mathbf{H}}{\left(\mathbf{W}^{T} \mathbf{W}\right)_{i i}}\right]_{+}
\end{aligned}
$$

Multiplicative Update (MU)

$$
w_{i j} \leftarrow w_{i j} \frac{\left(\mathbf{A H}^{\top}\right)_{i j}}{\left.\mathbf{(W H H} \mathbf{H}^{T}\right)_{i j}} h_{i j} \leftarrow h_{i j} \frac{\left(\mathbf{W}^{\top} \mathbf{A}\right)_{i j}}{\left.\mathbf{W}^{\top} \mathbf{W H}\right)_{i j}}
$$

AUNMF-Algorithm

Require: A is an $m \times n$ matrix, k is rank of approximation
1: Initialize \mathbf{H} with a non-negative matrix 2: while stopping criteria not satisfied do 3: Update \mathbf{W} using $\mathbf{H H}^{T}$ and $\mathbf{A} \mathbf{H}^{T}$ 4: Update \mathbf{H} using $\mathbf{W}^{T} \mathbf{W}$ and $\mathbf{W}^{T} \mathbf{A}$ end while

Naïve Parallel ANLS-BPP

MPI-FAUN

- Scalability is achieved by reducing the communication cost
- Intelligent tensor distribution so that entire computation happen in-situ
- Operations sequencing
- Collective MPI calls to reduce latency

1D NMF - Long and Thin matrices

MPI-FAUN Framework

Strong Scaling

Sparse Synthetic

Dense Synthetic

* All-Reduce ${ }^{\otimes}$ Reduce-Scatter ${ }^{*}$ All-Gather \square Gram \square LUC \square MM

Dense/ Sparse Syn	$\begin{aligned} & 207,360 \times \\ & 138,240 \end{aligned}$	Sparse Real world	1 million nodes, 3 million edges	Dense Real world	$\begin{aligned} & 1,013,400 \times \\ & 13,824(12 \\ & \text { min, } 20 \mathrm{fps}) \end{aligned}$

MPI-FAUN

- Distributed Communication avoiding NMF Algorithms
- https://github.com/ramkikannan/nmflibrary
- https://arxiv.org/abs/1609.09154
- Miniapp and benchmarked on OLCF Platforms

Dataset	Type	Matrix size	NMF Time
Video	Dense	1 Million x 13,824	5.73 seconds
Stack Exchange	Sparse	627,047 x 12 Million	67 seconds
Webbase-2001	Sparse	118 Million x 118 Million	25 minutes

Higher Order Tensors

	BLAS L2
BLAS L1	BLAS L3
	LAPACK

Existing DR for NHOT - Matricization

- Works only when some of the dimensions are independent
- Matricizing NHOT is non-trivial

Non-negative Tensor Factorization

Input

$\mathcal{A} \in \mathbb{R}^{M_{1} \times \cdots \times M_{N}}$
Low Rank k Output

A factor for every mode $\mathbf{H}^{(1)}, \ldots, \mathbf{H}^{(N)}$
$\mathbf{H}^{(\bar{n})} \in \mathbb{R}^{M_{n} \times K}$

Novelty : Most of the tensor operations becomes infeasible on higher orders. Higher order tensors are going to be the defacto and we should be prepared with algorithms that can help us compute and interpret these higher order data.

Cichocki, Andrzej, et al. Nonnegative matrix and tensor factorizations: applications to exploratory multi-wwa@AK RIDGE 19 Presdata analysis and blind source separation. John Wiley \& Sons, 2009.

Fibers and Slices

(a) Horizontal slices: $\mathbf{X}_{i: \text { : }}$

Some tensor operations

Mode-n matricization: The mode-n matricization of $\mathcal{A} \in \mathbb{R}^{M_{1} \times \cdots \times M_{N}}$, denoted by $\mathbf{A}^{<n>}$, is a matrix obtained by linearizing all the indices of tensor \mathcal{A} except n. Specifically, $\mathbf{A}^{<n>}$ is a matrix of size $M_{n} \times\left(\prod_{\tilde{n}=1, \tilde{n} \neq n}^{N} M_{\tilde{n}}\right)$, and the $\left(m_{1}, \ldots, m_{N}\right)$ th element of \mathcal{A} is mapped to the (m_{n}, J)th element of $\mathbf{A}^{<n>}$ where

$$
J=1+\sum_{j=1}^{N}\left(m_{j}-1\right) J_{j} \text { and } J_{j}=\prod_{l=1, l \neq n}^{j-1} M_{l}
$$

Khatri-Rao product: The Khatri-Rao product of two matrices $\mathbf{A} \in \mathbb{R}^{J_{1} \times L}$ and $\mathbf{B} \in \mathbb{R}^{J_{2} \times L}$, denoted by $\mathbf{A} \odot \mathbf{B} \in \mathbb{R}^{\left(J_{1} J_{2}\right) \times L}$, is defined as

$$
\mathbf{A} \odot \mathbf{B}=\left[\begin{array}{cccc}
a_{11} \mathbf{b}_{1} & a_{12} \mathbf{b}_{2} & \cdots & a_{1 L} \mathbf{b}_{L} \\
a_{21} \mathbf{b}_{1} & a_{22} \mathbf{b}_{2} & \cdots & a_{2 L} \mathbf{b}_{L} \\
\vdots & \vdots & \ddots & \vdots \\
a_{J_{1} 1} \mathbf{b}_{1} & a_{J_{1} 2} \mathbf{b}_{2} & \cdots & a_{J_{1} L} \mathbf{b}_{L}
\end{array}\right]
$$

NMF vs NTF

NMF	NTF				
$\min _{W \geq 0, H \geq 0}\| \| A-W H \\|_{F}^{2}$	$\begin{gathered} \min _{H^{(i)} \geq 0}\left\\|A-\llbracket H^{(1)}, \ldots, H^{(n)} \rrbracket\right\\|_{F}^{2} \\ \forall i=1, \ldots, n \end{gathered}$				
$\mathbf{H} \leftarrow \underset{\mathbf{H} \geqslant 0}{\operatorname{argmin}}\\|\mathbf{A}-\mathbf{W}\\|_{F}$	$\mathbf{H}^{(n)} \leftarrow \underset{\mathbf{H} \geq 0}{\arg \min }\left\\|\mathbf{B}^{(n)} \mathbf{H}^{T}-\left(\mathbf{A}^{<n>}\right)^{T}\right\\|_{F}^{2} .$				
	$\begin{aligned} \mathbf{B}^{(n)}= & \mathbf{H}^{(N)} \odot \cdots \odot \mathbf{H}^{(n+1)} \odot \mathbf{H}^{(n-1)} \odot \cdots \odot \mathbf{H}^{(1)} \\ & \in \mathbb{R}^{\left(\prod_{n=1, n+\pi n}^{N} M_{\bar{n}}\right) \times K} \text { Khatri-Rao Prod } \end{aligned}$				
$\left(\mathbf{H}^{\mathbf{i}}\right)^{\top} \leqslant \operatorname{updateH}\left(\mathbf{W}^{\top} \mathbf{W},\left(\mathbf{W}^{\top} \mathbf{A}^{\mathrm{i}}\right)^{\top}\right)$	$\left(\mathbf{B}^{(n)}\right)^{T} \mathbf{B}^{(n)}=\bigotimes_{\tilde{n}=1, \tilde{n} \neq n}^{N}\left(\mathbf{H}^{(\tilde{n})}\right)^{T} \mathbf{H}^{(\tilde{n})},$				
	$\mathbf{B}^{(n) T}\left(\mathbf{A}^{<n>}\right)^{T}$ - MTTKRP				

Distributed NCP Algorithm

- N-D Process Grid for N modes $P_{1} \times \cdots \times P_{N}$
- Input Tensor is distributed as $\mathcal{A}_{p_{1} \cdots p_{N}}$ is $\left(M_{1} / P_{1}\right) \times \cdots \times\left(M_{N} / P_{N}\right)$
- Factors are all_gathered as $\mathbf{H}_{p_{i}}^{(i)}$ is $\left(M_{i} / P_{i}\right) \times k$ that is redundant across $\left(\star, \ldots, \star, p_{i}, \star, \ldots, \star\right)$, for $1 \leqslant i \leqslant N$
- $\mathbf{U}=\operatorname{Local} \dot{\operatorname{SinRK}}\left(\mathbf{H}_{\mathbf{p}}^{(i)}\right)$ where $\mathbf{H}_{\mathbf{p}}^{(i)}$ of dimensions $\left(M_{i} / P\right) \times k$
- $\mathbf{G}^{(i)}=\operatorname{All-Reduce}(\mathbf{U},(\star, \ldots, \star))$
$-\mathbf{S}=\underset{n \neq i}{\circledast} \mathbf{G}^{(i)}$
$\cdot \mathbf{V}=\stackrel{n \neq i}{\operatorname{Local}-\operatorname{MTTKRP}}\left(\mathcal{A}_{p_{1} \cdots p_{N}},\left\{\mathbf{H}_{p_{n}}^{(n)}\right\}, i\right)$
- $\mathbf{W}=\operatorname{Reduce}-\operatorname{Scatter}\left(\mathbf{V},\left(\star, \ldots, \star, p_{i}, \star, \ldots, \star\right)\right)$
- Compute $\mathbf{H}_{\mathrm{p}}^{(i)}$ from \mathbf{S} and \mathbf{W} using local NLS

Conclusion and Future works

- Conclusion
- MPI-FAUN
- Distributed NTF
- Future work
- Benchmarking on very large datasets
- Optimal Communication
- Interpretation for scientific datasets
- Sparse Tensor with Hypergraph

