
ORNL is managed by UT-Battelle 
for the US Department of Energy

Distributed 
Nonnegative Tensor 
Low Rank 
Approximation for 
Large-Scale 
Clustering

https://github.com/ramkikannan/

Ramakrishnan(Ramki) Kannan
Grey Ballard (Wake Forest 
University)
Haesun Park (Georgia Institute of 
Technology)
Barry Drake (Georgia Tech 
Research Institue)



2 Presentation_name

Acknowledgements

This manuscript has been co-authored by UT-Battelle, LLC under Contract No. DE-AC05-
00OR22725 with the U.S. Department of Energy.  This project was partially funded by the 
Laboratory Director's Research and Development fund. This research used resources of the Oak 
Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by 
the Office of Science of the U.S. Department of Energy.
This research used resources of the National Energy Research Scientific Computing Center, a DOE 
Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy 
under Contract No. DE-AC02-05CH11231.
Also, partial funding for this work was provided by AFOSR Grant FA9550-13-1-0100, National 
Science Foundation (NSF) grants IIS-1348152, ACI-1338745, ACI-1642410, and ACI-1642385,  
Defense Advanced Research Projects Agency (DARPA) XDATA program grant FA8750-12-2-0309.
We also thank NSF for the travel grant to present this work in the conference through the grant 
CCF-1552229.
The United States Government retains and the publisher, by accepting the article for publication, 
acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, 
world-wide license to publish or reproduce the published form of this manuscript, or allow others to 
do so, for United States Government purposes. The Department of Energy will provide public 
access to these results of federally sponsored research in accordance with the DOE Public Access 
Plan http://energy.gov/downloads/doepublic-access-plan. Any opinions, findings and conclusions or 
recommendations expressed in this material are those of the authors and do not necessarily reflect 
the views of the USDOE, NERSC, AFOSR, NSF or DARPA.



3 Presentation_name

Agenda

• Introduction and Motivation
• MPI-FAUN - Distributed NMF 

– Alternating-Updating NMF(AUNMF)
– 1D Distribution
– 2D Distribution

• NTF
– Tensor Introduction and Operations
– Distributed NTF



4 Presentation_name

Motivation

• Observed features/collected metrics/independent 
variable/predictor cannot explain the dependent 
variable/response/outcome variable

• Eg., temperature, humidity, precipitation, etc. are 
insufficient to explain the probability to rain

• It is impossible to collect all the features that explain 
an outcome

• Sometimes, statistically significant latent features 
contained in the factors offer explanation



5 Presentation_name

NHOT Illustration: Hyper Spectral Image

http://www.harrisgeospatial.com/Portals/0/blogs/imageryspeaks/USGS%20PRISM/BlogPost_Figure1.jpg

Lu G, Fei B; Medical hyperspectral imaging: a review. J. Biomed. Opt. 0001;19(1):010901.  doi:10.1117/1.JBO.19.1.010901.

http://www.harrisgeospatial.com/Portals/0/blogs/imageryspeaks/USGS%20PRISM/BlogPost_Figure1.jpg
http://www.harrisgeospatial.com/Portals/0/blogs/imageryspeaks/USGS%20PRISM/BlogPost_Figure1.jpg


6 Presentation_name

3D – 4D 
Mass Spectrometry 

Data

nD Data

t / min0 1 2 3 9 10 11 12

R
el

. A
b.

0

50

100 (a)

m/z420 430 440 450 460

R
el

. A
b.

0

50

100

Laser ON

Laser OFF

(b)

m/z420 430 440 450 460

R
el

. A
b.

0

50

100 (c)

100 µm

Mass 
Spectrum

3D 
Optical Spectroscopy

Data

 
117 

 
 
 
 
 
 

 
Figure 72. Normalized fluorescence spectra of k, a single 50 nm edge length gold 
nanoctahedra, and l, a dimer of two 50 nm edge length gold nanoctahedra, immobilized 
on a quartz cover slip.  Fluorescence spectral data was acquired by three consecutive 5 
minute scans, background subtracted, and smoothed to reduce noise. 

  

500 550 600 650 700 750 800

In
te

ns
ity

 (N
or

m
ali

ze
d)

 

Wavelength (nm) 

k l

Optical 
Spectrum

Hyperspectral 
AFM Data

M
as

s 
Sp

ec
tr

om
et

ry
O

ptical Spectroscopy

Scanning Probe Microscopy (Atomic 
Force Microscopy)

Dimensionality Reduction in Scientific Data
• Multimodal characterization of materials –

comprehensive characterization from chemical composition 
to functional properties on the nanoscale

Thanks Ielev Anton and Sergei Kalinin



7 Presentation_name

Example 1 : NMF vs. PCA

TOF SIMS Data – Collaboration w/ Ielev Anton

PCA Eigen vectors

Both PCA and NMF are insufficient 
They do not consider the neighbourhood information
To consider this information, we use regularization



8 Presentation_name

Example 2 : Video DataFor Peer Review

A:23

MU HALS ABPP
0

50

100

Ti
m

e
(s

ec
on

ds
)

All-Reduce
Reduce-Scatter

All-Gather
Gram
LUC
MM

(a) Time

0 10 20 30

0.98

0.99

1

Iterations

R
el

.E
rr

or
fo

rk
=

50

MU
HALS
ABPP

(b) Error

Fig. 8: NMF comparison on webbase-2001 for k=50 on 1536 processors.

Input Frame(A) Background (WH) Moving Object A �WH

Fig. 9: Moving object detection for video data using NMF. Each row of images corresponds to
a particular frame in the video. The left column is the original frame, the middle column is the
reconstructed frame from the low-rank approximation (which captures the background), and the
right column is the di↵erence (which captures the moving objects).

and the moving objects are given by A � Â. We can clearly see the background remains static and
the moving objects (e.g., cars) are visible.

6.4.2. Topic Modeling of Stack Exchange Data. We downloaded the latest Stack Overflow dump
from its archive on 28-Jul-2016. The details of the preprocessing and the sparse matrix generation
are explained in Section 6.1.1. We ran our MPI-FAUN algorithm on this dataset, which has nearly

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 23 of 27 ACM Transactions on Knowledge Discovery from Data

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



9 Presentation_name

�

A W

H
i

j j

im

n k

k

n

Matrix Factorization (MF)

Input

Low Rank Factors

Fe
at

ur
es

Samples
Representatives

Samples distribution over 
representatives 



10 Presentation_name

Alternating Updating NMF (AUNMF)

Alternating-Updating NMF Algorithms(AU-NMF)

ANLS-BPP

W argmin
W̃>0

���A� W̃H
���
F
,

H argmin
H̃>0

���A�WH̃
���
F
.

HALS Update

wi  

wi +

(AHT )i �W(HHT )i

(HHT )ii

�

+

hi  

hi +

(WTA)i � (WTW)iH

(WTW)ii

�

+

MU Update

wij  wij
(AHT )ij

(WHHT )ij
hij  hij

(WTA)ij
(WTWH)ij

AU-NMF Algorithm

Require: A is an m ⇥ n matrix, k is rank of
approximation

1: Initialize H with a non-negative matrix

in Rn⇥k
+ .

2: while stopping criteria not satisfied do

3: Update W using HHT and AHT

4: Update H using WTW and WTA

5: end while

0 20 40

0

0.2

0.4

0.6

0.8

Iterations

R
el
.E
rr
or

MU
HALS
NBPP

9 / 21

Alternating-Updating NMF Algorithms(AU-NMF)

ANLS-BPP

W argmin
W̃>0

���A� W̃H
���
F
,

H argmin
H̃>0

���A�WH̃
���
F
.

HALS Update

wi  

wi +

(AHT )i �W(HHT )i

(HHT )ii

�

+

hi  

hi +

(WTA)i � (WTW)iH

(WTW)ii

�

+

MU Update

wij  wij
(AHT )ij

(WHHT )ij
hij  hij

(WTA)ij
(WTWH)ij

AU-NMF Algorithm

Require: A is an m ⇥ n matrix, k is rank of
approximation

1: Initialize H with a non-negative matrix

in Rn⇥k
+ .

2: while stopping criteria not satisfied do

3: Update W using HHT and AHT

4: Update H using WTW and WTA

5: end while

0 20 40

0

0.2

0.4

0.6

0.8

Iterations

R
el
.E
rr
or

MU
HALS
NBPP

9 / 21

Alternating-Updating NMF Algorithms(AU-NMF)

ANLS-BPP

W argmin
W̃>0

���A� W̃H
���
F
,

H argmin
H̃>0

���A�WH̃
���
F
.

HALS Update

wi  

wi +

(AHT )i �W(HHT )i

(HHT )ii

�

+

hi  

hi +

(WTA)i � (WTW)iH

(WTW)ii

�

+

MU Update

wij  wij
(AHT )ij

(WHHT )ij
hij  hij

(WTA)ij
(WTWH)ij

AU-NMF Algorithm

Require: A is an m ⇥ n matrix, k is rank of
approximation

1: Initialize H with a non-negative matrix

in Rn⇥k
+ .

2: while stopping criteria not satisfied do

3: Update W using HHT and AHT

4: Update H using WTW and WTA

5: end while

0 20 40

0

0.2

0.4

0.6

0.8

Iterations

R
el
.E
rr
or

MU
HALS
NBPP

9 / 21

ANLS-BPP (Alternating NLS –
Block Principal Pivoting)

HALS (Hierarchical Alternating Least Squares)

Multiplicative Update (MU)

Alternating-Updating NMF Algorithms(AU-NMF)

ANLS-BPP

W argmin
W̃>0

���A� W̃H
���
F
,

H argmin
H̃>0

���A�WH̃
���
F
.

HALS Update

wi  

wi +

(AHT )i �W(HHT )i

(HHT )ii

�

+

hi  

hi +

(WTA)i � (WTW)iH

(WTW)ii

�

+

MU Update

wij  wij
(AHT )ij

(WHHT )ij
hij  hij

(WTA)ij
(WTWH)ij

AU-NMF Algorithm

Require: A is an m ⇥ n matrix, k is rank of
approximation

1: Initialize H with a non-negative matrix

in Rn⇥k
+ .

2: while stopping criteria not satisfied do

3: Update W using HHT and AHT

4: Update H using WTW and WTA

5: end while

0 20 40

0

0.2

0.4

0.6

0.8

Iterations

R
el
.E
rr
or

MU
HALS
NBPP

9 / 21

AUNMF-Algorithm
Alternating-Updating NMF Algorithms(AU-NMF)

ANLS-BPP

W argmin
W̃>0

���A� W̃H
���
F
,

H argmin
H̃>0

���A�WH̃
���
F
.

HALS Update

wi  

wi +

(AHT )i �W(HHT )i

(HHT )ii

�

+

hi  

hi +

(WTA)i � (WTW)iH

(WTW)ii

�

+

MU Update

wij  wij
(AHT )ij

(WHHT )ij
hij  hij

(WTA)ij
(WTWH)ij

AU-NMF Algorithm

Require: A is an m ⇥ n matrix, k is rank of
approximation

1: Initialize H with a non-negative matrix

in Rn⇥k
+ .

2: while stopping criteria not satisfied do

3: Update W using HHT and AHT

4: Update H using WTW and WTA

5: end while

0 20 40

0

0.2

0.4

0.6

0.8

Iterations

R
el
.E
rr
or

MU
HALS
NBPP

9 / 21

Given A, find W, H such that !"#,%"#&'(| * −,- |.

Alternating-Updating NMF Algorithms(AU-NMF)

ANLS-BPP

W argmin
W̃>0

���A� W̃H
���
F
,

H argmin
H̃>0

���A�WH̃
���
F
.

HALS Update

wi  

wi +

(AHT )i �W(HHT )i

(HHT )ii

�

+

hi  

hi +

(WTA)i � (WTW)iH

(WTW)ii

�

+

MU Update

wij  wij
(AHT )ij

(WHHT )ij
hij  hij

(WTA)ij
(WTWH)ij

AU-NMF Algorithm

Require: A is an m ⇥ n matrix, k is rank of
approximation

1: Initialize H with a non-negative matrix

in Rn⇥k
+ .

2: while stopping criteria not satisfied do

3: Update W using HHT and AHT

4: Update H using WTW and WTA

5: end while

0 20 40

0

0.2

0.4

0.6

0.8

Iterations

R
el
.E
rr
or

MU
HALS
NBPP

9 / 21



11 Presentation_name

Naïve Parallel ANLS-BPP

k

n

H

k

W1

W2

W3

m

m/p

m/p

m/p

A1

A2

A3

�

n

m

n/p n/p n/p

A1 A2 A3 � W

k H1 H2 H3

n/p n/p n/p
m

AL
L_
GA

TH
ER

ALL_GATHER

Wi ←updateW(HHT,AiHT)

(Hi)T ←	updateH(WTW,(WTAi)T)



12 Presentation_name

MPI-FAUN

• Scalability is achieved by reducing the 
communication cost

• Intelligent tensor distribution so that entire 
computation happen in-situ

• Operations sequencing
• Collective MPI calls to reduce latency



13 Presentation_name

1D NMF – Long and Thin matrices

k
k

m

k

k

W0

W1

W2

W3

A0

A1

A2

A3

WTW

WTAWTW
H

n/p

m/p

n

(WTA)0

(WTA)1

(WTA)2

(WTA)3
n

k

MPI_REDUCE

MPI_SCATTER

k

n

n/p

MPI_ALLREDUCE



14 Presentation_name

MPI-FAUN Framework

k WTW

k

(W0)0

(W0)1

(W1)0

(W1)1

(W2)0

(W2)1	 		

m

W0

W1

W2

m/p

A00 A01

A10 A11

A20 A21

(H0)0 (H0)1 (H0)2 (H1)0 (H1)1 (H1)2

n/pc

n

n/p

H0 H1

m/pr

kH

W
(WTA)0 (WTA)1

n/p

n

MPI_REDUCE_SCATTER	
on	Processor	Columns
MPI_ALLREDUCE	on
all	Processors	
MPI_ALLGATHER	
on	Processor	Rows

(W0)0T(W0)0

(W0)1T(W0)1

(W1)0T(W1)0

(W1)1T(W1)1

(W2)0T(W2)0

(W2)1T(W2)1

WTA

W0TA00 W0TA00

W1TA10 W1TA11

W2TA20 W2TA20



15 Presentation_name

Strong Scaling

11

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve

0

1

2

3

Number of Processes (p)

Ti
m

e
(s

ec
on

ds
)

16 96 384 864 1536

(a) Sparse Synthetic

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve

0

1

2

3

Number of Processes (p)

Ti
m

e
(s

ec
on

ds
)

16 96 384 864 1536

(b) Dense Synthetic

M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP

0

5

10

Number of Processes (p)

Ti
m

e
(s

ec
on

ds
)

16 96 384 864 1536

(c) Sparse Real World (webbase-1M)

M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP

0

1

2

Number of Processes (p)
Ti

m
e

(s
ec

on
ds

)

All-Reduce Reduce-Scatter All-Gather Gram LUC MM

16 96 384 864 1536

(d) Dense Real World (Video)

Fig. 5: Strong scaling (varying p) with k= 50 benchmarking per-
iteration times.

2) ABPP’s time increases more quickly with k than those of
MU or HALS;
6.3.3.1 Observation 1: We see from the synthetic data sets

(Figures 6a and 6b) that the overall time of Naive increases more
rapidly with k than any other algorithm and that the increase
in time is due mainly to communication (All-Gather). Table 3
predicts that Naive communication volume scales linearly with
k, and we see that in practice the prediction is almost perfect with

the synthetic problems. This confirms that the communication
is dominated by bandwidth costs and not latency costs (which
are constant with respect to k). We note that the communication
cost of MPI-FAUN scales like

p
k, which is why we don’t see as

dramatic an increase in communication time for MU, HALS, or
ABPPin Figure 6.

6.3.3.2 Observation 2: Focusing attention on time spent
in LUC computations, we can compare how MU, HALS, and
ABPP scale di↵erently with k. We see a more rapid increase
of LUC time for ABPP than MU or HALS; this is expected
because the LUC computations unique to ABPP require between
O(k3) and O(k4) operations (depending on the data) while the
unique LUC computations for MU and HALS are O(k2), with
all other parameters fixed. Thus, the extra per-iteration cost of
ABPP increases with k, so the advantage of ABPP of better
error reduction must also increase with k for it to remain superior
at large values of k. We also note that although the number of
operations within MM is O(k), we do not observe much increase
in time from k=10 to k=50; this is due to the improved e�ciency
of local MM for larger values of k.

6.3.4 Varying Processor Grid
In this section we demonstrate the e↵ect of the dimensions of the
processor grid on per-iteration performance. For a fixed total num-
ber of processors p, the communication cost of Algorithm 3 varies
with the choice of pr and pc. To minimize the amount of data
communicated, the theoretical analysis suggests that the processor
grid should be chosen to make the sizes of the local data matrix as
square as possible. This implies that if m/p>n, pr= p and pc=1 is
the optimal choice (a 1D processor grid); likewise if n/p>m then
a 1D processor grid with pr = 1 and pc = p is the optimal choice.
Otherwise, a 2D processor grid minimizes communication with
pr⇡
p

mp/n and pc⇡
p

np/m (subject to integrality and pr pc= p).
Figure 7 presents a benchmark of ABPP for the Sparse

Synthetic data set for fixed values of p and k. We vary the
processor grid dimensions from both 1D grids to the 2D grid
that matches the theoretical optimum exactly. Because the sizes
of the Sparse Synthetic matrix are 172,800 ⇥ 115,200 and the
number of processors is 1536, the theoretically optimal grid is
pr =
p

mp/n= 48 and pc =
p

np/m= 32. The experimental results
confirm that this processor grid is optimal, and we see that the
time spent communicating increases as the processor grid deviates
from the optimum, with the 1D grids performing the worst.

6.3.5 Scaling up to Very Large Sparse Datasets
In this section, we test MPI-FAUN by scaling up the problem
size. While we’ve used webbase-1M in previous experiments, we
consider webbase-2001 in this section as it is the largest sparse
data in University of Florida Sparse Matrix Collection [38]. The
former dataset has about 1 million nodes and 3 million edges,
whereas the latter dataset has over 100 million nodes and 1 billion
edges (see Section 6.1.1 for more details). Not only is the size of
the input matrix increased by two orders of magnitude (because
of the increase in the number of edges), but also the size of the
output matrices is increased by two orders of magnitude (because
of the increase in the number of nodes).

In fact, with a low rank of k=50, the size of the output matrices
dominates that of the input matrix: W and H together require a
total of 88 GB, while A (stored in compressed column format)
is only 16 GB. At this scale, because each node (consisting of
16 cores) of Rhea has 128 GB of memory, multiple nodes are

11

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve

0

1

2

3

Number of Processes (p)

Ti
m

e
(s

ec
on

ds
)

16 96 384 864 1536

(a) Sparse Synthetic

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve

0

1

2

3

Number of Processes (p)

Ti
m

e
(s

ec
on

ds
)

16 96 384 864 1536

(b) Dense Synthetic

M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP

0

5

10

Number of Processes (p)

Ti
m

e
(s

ec
on

ds
)

16 96 384 864 1536

(c) Sparse Real World (webbase-1M)

M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP

0

1

2

Number of Processes (p)
Ti

m
e

(s
ec

on
ds

)

All-Reduce Reduce-Scatter All-Gather Gram LUC MM

16 96 384 864 1536

(d) Dense Real World (Video)

Fig. 5: Strong scaling (varying p) with k= 50 benchmarking per-
iteration times.

2) ABPP’s time increases more quickly with k than those of
MU or HALS;
6.3.3.1 Observation 1: We see from the synthetic data sets

(Figures 6a and 6b) that the overall time of Naive increases more
rapidly with k than any other algorithm and that the increase
in time is due mainly to communication (All-Gather). Table 3
predicts that Naive communication volume scales linearly with
k, and we see that in practice the prediction is almost perfect with

the synthetic problems. This confirms that the communication
is dominated by bandwidth costs and not latency costs (which
are constant with respect to k). We note that the communication
cost of MPI-FAUN scales like

p
k, which is why we don’t see as

dramatic an increase in communication time for MU, HALS, or
ABPPin Figure 6.

6.3.3.2 Observation 2: Focusing attention on time spent
in LUC computations, we can compare how MU, HALS, and
ABPP scale di↵erently with k. We see a more rapid increase
of LUC time for ABPP than MU or HALS; this is expected
because the LUC computations unique to ABPP require between
O(k3) and O(k4) operations (depending on the data) while the
unique LUC computations for MU and HALS are O(k2), with
all other parameters fixed. Thus, the extra per-iteration cost of
ABPP increases with k, so the advantage of ABPP of better
error reduction must also increase with k for it to remain superior
at large values of k. We also note that although the number of
operations within MM is O(k), we do not observe much increase
in time from k=10 to k=50; this is due to the improved e�ciency
of local MM for larger values of k.

6.3.4 Varying Processor Grid
In this section we demonstrate the e↵ect of the dimensions of the
processor grid on per-iteration performance. For a fixed total num-
ber of processors p, the communication cost of Algorithm 3 varies
with the choice of pr and pc. To minimize the amount of data
communicated, the theoretical analysis suggests that the processor
grid should be chosen to make the sizes of the local data matrix as
square as possible. This implies that if m/p>n, pr= p and pc=1 is
the optimal choice (a 1D processor grid); likewise if n/p>m then
a 1D processor grid with pr = 1 and pc = p is the optimal choice.
Otherwise, a 2D processor grid minimizes communication with
pr⇡
p

mp/n and pc⇡
p

np/m (subject to integrality and pr pc= p).
Figure 7 presents a benchmark of ABPP for the Sparse

Synthetic data set for fixed values of p and k. We vary the
processor grid dimensions from both 1D grids to the 2D grid
that matches the theoretical optimum exactly. Because the sizes
of the Sparse Synthetic matrix are 172,800 ⇥ 115,200 and the
number of processors is 1536, the theoretically optimal grid is
pr =
p

mp/n= 48 and pc =
p

np/m= 32. The experimental results
confirm that this processor grid is optimal, and we see that the
time spent communicating increases as the processor grid deviates
from the optimum, with the 1D grids performing the worst.

6.3.5 Scaling up to Very Large Sparse Datasets
In this section, we test MPI-FAUN by scaling up the problem
size. While we’ve used webbase-1M in previous experiments, we
consider webbase-2001 in this section as it is the largest sparse
data in University of Florida Sparse Matrix Collection [38]. The
former dataset has about 1 million nodes and 3 million edges,
whereas the latter dataset has over 100 million nodes and 1 billion
edges (see Section 6.1.1 for more details). Not only is the size of
the input matrix increased by two orders of magnitude (because
of the increase in the number of edges), but also the size of the
output matrices is increased by two orders of magnitude (because
of the increase in the number of nodes).

In fact, with a low rank of k=50, the size of the output matrices
dominates that of the input matrix: W and H together require a
total of 88 GB, while A (stored in compressed column format)
is only 16 GB. At this scale, because each node (consisting of
16 cores) of Rhea has 128 GB of memory, multiple nodes are

Sparse Realworld

Dense Realworld

11

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve

0

1

2

3

Number of Processes (p)

Ti
m

e
(s

ec
on

ds
)

16 96 384 864 1536

(a) Sparse Synthetic

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve

0

1

2

3

Number of Processes (p)

Ti
m

e
(s

ec
on

ds
)

16 96 384 864 1536

(b) Dense Synthetic

M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP

0

5

10

Number of Processes (p)

Ti
m

e
(s

ec
on

ds
)

16 96 384 864 1536

(c) Sparse Real World (webbase-1M)

M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP

0

1

2

Number of Processes (p)

Ti
m

e
(s

ec
on

ds
)

All-Reduce Reduce-Scatter All-Gather Gram LUC MM

16 96 384 864 1536

(d) Dense Real World (Video)

Fig. 5: Strong scaling (varying p) with k= 50 benchmarking per-
iteration times.

2) ABPP’s time increases more quickly with k than those of
MU or HALS;
6.3.3.1 Observation 1: We see from the synthetic data sets

(Figures 6a and 6b) that the overall time of Naive increases more
rapidly with k than any other algorithm and that the increase
in time is due mainly to communication (All-Gather). Table 3
predicts that Naive communication volume scales linearly with
k, and we see that in practice the prediction is almost perfect with

the synthetic problems. This confirms that the communication
is dominated by bandwidth costs and not latency costs (which
are constant with respect to k). We note that the communication
cost of MPI-FAUN scales like

p
k, which is why we don’t see as

dramatic an increase in communication time for MU, HALS, or
ABPPin Figure 6.

6.3.3.2 Observation 2: Focusing attention on time spent
in LUC computations, we can compare how MU, HALS, and
ABPP scale di↵erently with k. We see a more rapid increase
of LUC time for ABPP than MU or HALS; this is expected
because the LUC computations unique to ABPP require between
O(k3) and O(k4) operations (depending on the data) while the
unique LUC computations for MU and HALS are O(k2), with
all other parameters fixed. Thus, the extra per-iteration cost of
ABPP increases with k, so the advantage of ABPP of better
error reduction must also increase with k for it to remain superior
at large values of k. We also note that although the number of
operations within MM is O(k), we do not observe much increase
in time from k=10 to k=50; this is due to the improved e�ciency
of local MM for larger values of k.

6.3.4 Varying Processor Grid
In this section we demonstrate the e↵ect of the dimensions of the
processor grid on per-iteration performance. For a fixed total num-
ber of processors p, the communication cost of Algorithm 3 varies
with the choice of pr and pc. To minimize the amount of data
communicated, the theoretical analysis suggests that the processor
grid should be chosen to make the sizes of the local data matrix as
square as possible. This implies that if m/p>n, pr= p and pc=1 is
the optimal choice (a 1D processor grid); likewise if n/p>m then
a 1D processor grid with pr = 1 and pc = p is the optimal choice.
Otherwise, a 2D processor grid minimizes communication with
pr⇡
p

mp/n and pc⇡
p

np/m (subject to integrality and pr pc= p).
Figure 7 presents a benchmark of ABPP for the Sparse

Synthetic data set for fixed values of p and k. We vary the
processor grid dimensions from both 1D grids to the 2D grid
that matches the theoretical optimum exactly. Because the sizes
of the Sparse Synthetic matrix are 172,800 ⇥ 115,200 and the
number of processors is 1536, the theoretically optimal grid is
pr =
p

mp/n= 48 and pc =
p

np/m= 32. The experimental results
confirm that this processor grid is optimal, and we see that the
time spent communicating increases as the processor grid deviates
from the optimum, with the 1D grids performing the worst.

6.3.5 Scaling up to Very Large Sparse Datasets
In this section, we test MPI-FAUN by scaling up the problem
size. While we’ve used webbase-1M in previous experiments, we
consider webbase-2001 in this section as it is the largest sparse
data in University of Florida Sparse Matrix Collection [38]. The
former dataset has about 1 million nodes and 3 million edges,
whereas the latter dataset has over 100 million nodes and 1 billion
edges (see Section 6.1.1 for more details). Not only is the size of
the input matrix increased by two orders of magnitude (because
of the increase in the number of edges), but also the size of the
output matrices is increased by two orders of magnitude (because
of the increase in the number of nodes).

In fact, with a low rank of k=50, the size of the output matrices
dominates that of the input matrix: W and H together require a
total of 88 GB, while A (stored in compressed column format)
is only 16 GB. At this scale, because each node (consisting of
16 cores) of Rhea has 128 GB of memory, multiple nodes are

Sparse Synthetic

11

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve

0

1

2

3

Number of Processes (p)

Ti
m

e
(s

ec
on

ds
)

16 96 384 864 1536

(a) Sparse Synthetic

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve
0

1

2

3

Number of Processes (p)

Ti
m

e
(s

ec
on

ds
)

16 96 384 864 1536

(b) Dense Synthetic

M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP

0

5

10

Number of Processes (p)

Ti
m

e
(s

ec
on

ds
)

16 96 384 864 1536

(c) Sparse Real World (webbase-1M)

M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP

0

1

2

Number of Processes (p)

Ti
m

e
(s

ec
on

ds
)

All-Reduce Reduce-Scatter All-Gather Gram LUC MM

16 96 384 864 1536

(d) Dense Real World (Video)

Fig. 5: Strong scaling (varying p) with k= 50 benchmarking per-
iteration times.

2) ABPP’s time increases more quickly with k than those of
MU or HALS;
6.3.3.1 Observation 1: We see from the synthetic data sets

(Figures 6a and 6b) that the overall time of Naive increases more
rapidly with k than any other algorithm and that the increase
in time is due mainly to communication (All-Gather). Table 3
predicts that Naive communication volume scales linearly with
k, and we see that in practice the prediction is almost perfect with

the synthetic problems. This confirms that the communication
is dominated by bandwidth costs and not latency costs (which
are constant with respect to k). We note that the communication
cost of MPI-FAUN scales like

p
k, which is why we don’t see as

dramatic an increase in communication time for MU, HALS, or
ABPPin Figure 6.

6.3.3.2 Observation 2: Focusing attention on time spent
in LUC computations, we can compare how MU, HALS, and
ABPP scale di↵erently with k. We see a more rapid increase
of LUC time for ABPP than MU or HALS; this is expected
because the LUC computations unique to ABPP require between
O(k3) and O(k4) operations (depending on the data) while the
unique LUC computations for MU and HALS are O(k2), with
all other parameters fixed. Thus, the extra per-iteration cost of
ABPP increases with k, so the advantage of ABPP of better
error reduction must also increase with k for it to remain superior
at large values of k. We also note that although the number of
operations within MM is O(k), we do not observe much increase
in time from k=10 to k=50; this is due to the improved e�ciency
of local MM for larger values of k.

6.3.4 Varying Processor Grid
In this section we demonstrate the e↵ect of the dimensions of the
processor grid on per-iteration performance. For a fixed total num-
ber of processors p, the communication cost of Algorithm 3 varies
with the choice of pr and pc. To minimize the amount of data
communicated, the theoretical analysis suggests that the processor
grid should be chosen to make the sizes of the local data matrix as
square as possible. This implies that if m/p>n, pr= p and pc=1 is
the optimal choice (a 1D processor grid); likewise if n/p>m then
a 1D processor grid with pr = 1 and pc = p is the optimal choice.
Otherwise, a 2D processor grid minimizes communication with
pr⇡
p

mp/n and pc⇡
p

np/m (subject to integrality and pr pc= p).
Figure 7 presents a benchmark of ABPP for the Sparse

Synthetic data set for fixed values of p and k. We vary the
processor grid dimensions from both 1D grids to the 2D grid
that matches the theoretical optimum exactly. Because the sizes
of the Sparse Synthetic matrix are 172,800 ⇥ 115,200 and the
number of processors is 1536, the theoretically optimal grid is
pr =
p

mp/n= 48 and pc =
p

np/m= 32. The experimental results
confirm that this processor grid is optimal, and we see that the
time spent communicating increases as the processor grid deviates
from the optimum, with the 1D grids performing the worst.

6.3.5 Scaling up to Very Large Sparse Datasets
In this section, we test MPI-FAUN by scaling up the problem
size. While we’ve used webbase-1M in previous experiments, we
consider webbase-2001 in this section as it is the largest sparse
data in University of Florida Sparse Matrix Collection [38]. The
former dataset has about 1 million nodes and 3 million edges,
whereas the latter dataset has over 100 million nodes and 1 billion
edges (see Section 6.1.1 for more details). Not only is the size of
the input matrix increased by two orders of magnitude (because
of the increase in the number of edges), but also the size of the
output matrices is increased by two orders of magnitude (because
of the increase in the number of nodes).

In fact, with a low rank of k=50, the size of the output matrices
dominates that of the input matrix: W and H together require a
total of 88 GB, while A (stored in compressed column format)
is only 16 GB. At this scale, because each node (consisting of
16 cores) of Rhea has 128 GB of memory, multiple nodes are

Dense Synthetic

11

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve

0

1

2

3

Number of Processes (p)

Ti
m

e
(s

ec
on

ds
)

16 96 384 864 1536

(a) Sparse Synthetic

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve

0

1

2

3

Number of Processes (p)

Ti
m

e
(s

ec
on

ds
)

16 96 384 864 1536

(b) Dense Synthetic

M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP

0

5

10

Number of Processes (p)
Ti

m
e

(s
ec

on
ds

)

16 96 384 864 1536

(c) Sparse Real World (webbase-1M)

M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP M
U

H
A

LS
A

B
PP

0

1

2

Number of Processes (p)

Ti
m

e
(s

ec
on

ds
)

All-Reduce Reduce-Scatter All-Gather Gram LUC MM

16 96 384 864 1536

(d) Dense Real World (Video)

Fig. 5: Strong scaling (varying p) with k= 50 benchmarking per-
iteration times.

2) ABPP’s time increases more quickly with k than those of
MU or HALS;
6.3.3.1 Observation 1: We see from the synthetic data sets

(Figures 6a and 6b) that the overall time of Naive increases more
rapidly with k than any other algorithm and that the increase
in time is due mainly to communication (All-Gather). Table 3
predicts that Naive communication volume scales linearly with
k, and we see that in practice the prediction is almost perfect with

the synthetic problems. This confirms that the communication
is dominated by bandwidth costs and not latency costs (which
are constant with respect to k). We note that the communication
cost of MPI-FAUN scales like

p
k, which is why we don’t see as

dramatic an increase in communication time for MU, HALS, or
ABPPin Figure 6.

6.3.3.2 Observation 2: Focusing attention on time spent
in LUC computations, we can compare how MU, HALS, and
ABPP scale di↵erently with k. We see a more rapid increase
of LUC time for ABPP than MU or HALS; this is expected
because the LUC computations unique to ABPP require between
O(k3) and O(k4) operations (depending on the data) while the
unique LUC computations for MU and HALS are O(k2), with
all other parameters fixed. Thus, the extra per-iteration cost of
ABPP increases with k, so the advantage of ABPP of better
error reduction must also increase with k for it to remain superior
at large values of k. We also note that although the number of
operations within MM is O(k), we do not observe much increase
in time from k=10 to k=50; this is due to the improved e�ciency
of local MM for larger values of k.

6.3.4 Varying Processor Grid
In this section we demonstrate the e↵ect of the dimensions of the
processor grid on per-iteration performance. For a fixed total num-
ber of processors p, the communication cost of Algorithm 3 varies
with the choice of pr and pc. To minimize the amount of data
communicated, the theoretical analysis suggests that the processor
grid should be chosen to make the sizes of the local data matrix as
square as possible. This implies that if m/p>n, pr= p and pc=1 is
the optimal choice (a 1D processor grid); likewise if n/p>m then
a 1D processor grid with pr = 1 and pc = p is the optimal choice.
Otherwise, a 2D processor grid minimizes communication with
pr⇡
p

mp/n and pc⇡
p

np/m (subject to integrality and pr pc= p).
Figure 7 presents a benchmark of ABPP for the Sparse

Synthetic data set for fixed values of p and k. We vary the
processor grid dimensions from both 1D grids to the 2D grid
that matches the theoretical optimum exactly. Because the sizes
of the Sparse Synthetic matrix are 172,800 ⇥ 115,200 and the
number of processors is 1536, the theoretically optimal grid is
pr =
p

mp/n= 48 and pc =
p

np/m= 32. The experimental results
confirm that this processor grid is optimal, and we see that the
time spent communicating increases as the processor grid deviates
from the optimum, with the 1D grids performing the worst.

6.3.5 Scaling up to Very Large Sparse Datasets
In this section, we test MPI-FAUN by scaling up the problem
size. While we’ve used webbase-1M in previous experiments, we
consider webbase-2001 in this section as it is the largest sparse
data in University of Florida Sparse Matrix Collection [38]. The
former dataset has about 1 million nodes and 3 million edges,
whereas the latter dataset has over 100 million nodes and 1 billion
edges (see Section 6.1.1 for more details). Not only is the size of
the input matrix increased by two orders of magnitude (because
of the increase in the number of edges), but also the size of the
output matrices is increased by two orders of magnitude (because
of the increase in the number of nodes).

In fact, with a low rank of k=50, the size of the output matrices
dominates that of the input matrix: W and H together require a
total of 88 GB, while A (stored in compressed column format)
is only 16 GB. At this scale, because each node (consisting of
16 cores) of Rhea has 128 GB of memory, multiple nodes are

Dense/ 
Sparse Syn

207,360 ×
138,240 

Sparse 
Real world

1 million 
nodes, 3 
million 
edges

Dense Real 
world

1,013,400 ×
13,824  (12 
min, 20 fps)



16 Presentation_name

MPI-FAUN
• Distributed Communication avoiding NMF 

Algorithms
• https://github.com/ramkikannan/nmflibrary
• https://arxiv.org/abs/1609.09154
• Miniapp and benchmarked on OLCF Platforms

For Peer Review

A:2

(SGD) Updates [GNHS11]. Most of the algorithms in NMF literature are based on alternately op-
timizing each of the low rank factors W and H while keeping the other fixed, in which case each
subproblem is a constrained convex optimization problem. Subproblems can then be solved using
standard optimization techniques such as projected gradient or interior point method; a detailed sur-
vey for solving such problems can be found in [WZ13; KHP14]. In this paper, our implementation
uses either ABPP, MU, or HALS. But our parallel framework is extensible to other algorithms
as-is or with a few modifications, as long as they fit an alternating-updating framework (defined in
Section 4).

With the advent of large scale internet data and interest in Big Data, researchers have started
studying scalability of many foundational machine learning algorithms. To illustrate the dimension
of matrices commonly used in the machine learning community, we present a few examples. Nowa-
days the adjacency matrix of a billion-node social network is common. In the matrix representation
of a video data, every frame contains three matrices for each RGB color, which is reshaped into a
column. Thus in the case of a 4K video, every frame will take approximately 27 million rows (4096
row pixels x 2196 column pixels x 3 colors). Similarly, the popular representation of documents in
text mining is a bag-of-words matrix, where the rows are the dictionary and the columns are the
documents (e.g., webpages). Each entry Ai j in the bag-of-words matrix is generally the frequency
count of the word i in the document j. Typically with the explosion of the new terms in social media,
the number of words spans to millions. To handle such high-dimensional matrices, it is important to
study low-rank approximation methods in a data-distributed and parallel computing environment.

In this work, we present an e�cient algorithm and implementation using tools from the field of
High-Performance Computing (HPC). We maintain data in memory (distributed across processors),
take advantage of optimized libraries like BLAS and LAPACK for local computational routines,
and use the Message Passing Interface (MPI) standard to organize interprocessor communication.
Furthermore, the current hardware trend is that available parallelism (and therefore aggregate com-
putational rate) is increasing much more quickly than improvements in network bandwidth and
latency, which implies that the relative cost of communication (compared to computation) is in-
creasing. To address this challenge, we analyze algorithms in terms of both their computation and
communication costs. In particular, we prove in Section 5.2 that in the case of dense input and under
a mild assumption, our proposed algorithm minimizes the amount of data communicated between
processors to within a constant factor of the lower bound.

A key attribute of our framework is that the e�ciency does not require a loss of generality of
NMF algorithms. Our central observation is that most NMF algorithms consist of two main tasks:
(a) performing matrix multiplications and (b) solving Non-negative Least Squares (NLS) subprob-
lems, either approximately or exactly. More importantly, NMF algorithms tend to perform the same
matrix multiplications, di↵ering only in how they solve NLS subproblems, and the matrix multipli-
cations often dominate the running time of the algorithms. Our framework is designed to perform the
matrix multiplications e�ciently and organize the data so that the NLS subproblems can be solved
independently in parallel, leveraging any of a number of possible methods. We explore the overall
e�ciency of the framework and compare three di↵erent NMF methods in Section 6, performing
convergence, scalability, and parameter-tuning experiments on over 1500 processors.

Dataset Type Matrix size NMF Time
Video Dense 1 Million x 13,824 5.73 seconds

Stack Exchange Sparse 627,047 x 12 Million 67 seconds
Webbase-2001 Sparse 118 Million x 118 Million 25 minutes

Table I: MPI-FAUN on large real-world datasets. Reported time is for 30 iterations on 1536 proces-
sors with a low rank of 50.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 2 of 27ACM Transactions on Knowledge Discovery from Data

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://github.com/ramkikannan/nmflibrary
https://arxiv.org/abs/1609.09154


17 Presentation_name

Higher Order Tensors

. . .G11 G12 G1K

. . .G21 G22 G2K

. . .GM1 GM2 GMK

. .
 .

. .
 . . . . ...

Figure 3: A block matrix and its representation as a 4th-order tensor, created
by reshaping or projection of row blocks as lateral slices of 3-rd-order tensors.

... ...

...
...

...

...

...

...

... ... ......

Scalar Vector Matrix 3rd-order Tensor 4th-order Tensor

One-way 4-way 5-way

Univariate Multivariate
Multiway Analysis (High-order tensors)

  O
ne

 s
am

pl
e

A
 s

am
pl

e 
se

t

2-way 3-way

Figure 4: Graphical representation of multiway array (tensor) data of increas-
ing complexity, both for a single sample and for a set of samples (see [200] for
more detail).

Lower-case letters e.g, i, j, . . . are used for the subscripts in running indices and
capital letters I, J, . . . denote the upper bound of an index, i.e., i = 1, 2, . . . , I and
j = 1, 2, . . . , J. For a positive integer n, the shorthand notation † n ° is used
to denote the set of indices t1, 2, . . . , nu. To summarize, the order of a tensor is
the number of its “modes”, “ways” or “dimensions”, which can include space,
time, frequency, trials, classes, and dictionaries.

Notations and terminology used for tensors and tensors networks differ
across the scientific communities (see Table 2); to this end we employ a unify-
ing notation particularly suitable for machine learning and signal processing

7

O
ne

 S
am

pl
e

M
an

y 
Sa

m
pl

es

BLAS L1

Multivariate

Higher Order Tensors ((N)HOT)

https://arxiv.org/abs/1609.00893v1

BLAS L2
BLAS L3
LAPACK

Univariate

CNN



18 Presentation_name

32 A. CICHOCKI, R. ZDUNEK, A.H. PHAN, S. AMARI

Y

Fig. 1.18 Illustration of row-wise and column-wise unfolding (flattening, matricizing) of a third-
order tensor.

Observe that in the mode-n unfolding the mode-n fibers are rearranged to be the columns of the
matrix Y(n).
More generally, a subtensor of the tensor Y ∈ RI1×I2×···×IN , denoted by Y(in= j), is obtained by

fixing the n-th index to some value j. For example, a third-order tensorY ∈ RI1×I2×I3 with entries
yi1,i2,i3 and indices (i1, i2, i3) has a corresponding position (in, j) in the mode-n unfolded matrix
Y(n) (n = 1, 2, 3) as follows

• mode-1: j = i2 + (i3 − 1)I2,

• mode-2: j = i1 + (i3 − 1)I1,

• mode-3: j = i1 + (i2 − 1)I1.

Note that mode-n unfolding of a tensor Y ∈ RI1×I2 ···×IN also represents mode-1 unfolding of its
permuted tensor Ỹ ∈ RIn×I1 ···×In−1×In+1 ···×IN obtained by permuting its modes to obtain the mode-1
be In.

1.4.4 Vectorization

It is often convenient to represent tensors and matrices as vectors, whereby vectorization of
matrix Y = [y1, y2, . . . , yT ] ∈ RI×T is defined as

y = vec(Y) =
[
yT1 , y

T
2 , . . . , y

T
T

]T
∈ RIT . (1.67)

The vec-operator applied on a matrixY stacks its columns into a vector. The reshape is a reverse
function to vectorization which converts a vector to a matrix. For example, reshape(y, I, T ) ∈
RI×T is defined as (using MATLAB notations and similar to the reshape MATLAB function):

reshape(y, I, T ) =
[
y(1 : I), y(I + 1 : 2I), . . . , y((T − 1)I : IT )

]
∈ RI×T . (1.68)

Existing DR for NHOT - Matricization

• Works only when some of the dimensions are independent
• Matricizing NHOT is non-trivial

A



19 Presentation_name
Cichocki, Andrzej, et al. Nonnegative matrix and tensor factorizations: applications to exploratory multi-way 
data analysis and blind source separation. John Wiley & Sons, 2009.

Novelty : Most of the tensor operations becomes infeasible on higher orders. Higher order tensors 
are going to be the defacto and we should be prepared with algorithms that can help us compute 
and interpret these higher order data. 

Non-negative Tensor FactorizationTENSOR DECOMPOSITIONS AND FACTORIZATIONS 47

(a)

A +

( )I J

( )Q J

A

C

=

yitq

Y

( )I T Q

( )J T
E

( )I T Q

eitq

X=B
T

××

×

××

×

×

(b)

!Y

+ +

c

a

b

a

b

c

=

+ +

a a

b b cc11

1

1

1

1

JJ

J

J

J

J

T T

T(I Q)××

(c)

AY = Y(1)

( )I TQ ( )I J

( )J TQ

Y1 Y2 YQ...
X1 X2 ... XQ

X D X

X = B
T

rrr

qq

(q = 1, 2, . . . ,Q)

!

!

×

××

(d)

X=B
T

Y1

D1
A

( )I T Q

( )J T

( )I J

( )J J

Y = AD X,

DQ

!
×

×

×

××

(q = 1, 2, . . . ,Q)qq

Fig. 1.27 The alternative representations of the third-order PARAFAC model: (a) as a set of
three matrices using a scalar representation (see Eq. (1.123)), (b) as a set of vectors using
summation of rank-one tensors expressed by the outer products of the vectors (see Eq. (1.122)),
(c) decomposition into two matrices using row-wise unfolding and (d) representation by frontal
slices (see Eq. (1.134)) The tensor D ∈ RJ×J×Q has diagonal frontal slices Dq ∈ RJ×J , so we can
write Y ≈ D ×1 A ×2 B.

A
a

A

Input

302 J Glob Optim (2014) 58:285–319

A few other decomposition models of higher order tensors have been studied, and interested
readers are referred to [1,61]. The organization of this section is similar to that of Sect. 2,
and we will show that the NLS algorithms reviewed in Sect. 4 can also be used to factorize
tensors.

Let us consider an N th-order tensor A ∈ RM1×···×MN . For an integer K , we are
interested in finding nonnegative factor matrices H(1), . . . , H(N ) where H(n) ∈RMn×K for
n = 1, . . . , N such that

A ≈ [[H(1), . . . , H(N )]], (42)

where

H(n) =
[

h(n)
1 . . . h(n)

K

]
for n = 1, . . . , N and (43)

[[H(1), . . . , H(N )]] =
K∑

k=1

h(1)
k ◦ · · · ◦ h(N )

k . (44)

The ‘◦’ symbol represents the outer product of vectors, and a tensor in the form of
h(1)

k ◦· · ·◦h
(N )
k is called a rank-one tensor. Model (42) is known as CANDECOMP/PARAFAC

(CP) [14,43]: In the CP decomposition, A is represented as the sum of K rank-one tensors.
The smallest integer K for which (42) holds as equality is called the rank of tensor A. The
CP decomposition reduces to a matrix decomposition if N = 2. The nonnegative CP decom-
position is obtained by adding nonnegativity constraints to factor matrices H(1), . . . , H(N ).
A corresponding problem can be written as, for A ∈ RM1×···×MN

+ ,

min
H(1),...,H(N )

f (H(1), . . . , H(N )) =
∥∥∥A − [[H(1), . . . , H(N )]]

∥∥∥
2

F
,

s.t. H(n) ≥ 0 for n = 1, . . . N . (45)

We discuss algorithms for solving (45) in this section [19,32,54,60]. Toward that end, we
introduce definitions of some operations of tensors.

Mode-n matricization: The mode-n matricization of A ∈ RM1×···×MN , denoted by A<n>,
is a matrix obtained by linearizing all the indices of tensor A except n. Specifically, A<n> is
a matrix of size Mn × (

∏N
ñ=1,ñ ̸=n Mñ), and the (m1, . . . , m N )th element of A is mapped to

the (mn, J )th element of A<n> where

J = 1 +
N∑

j=1

(m j − 1)J j and J j =
j−1∏

l=1,l ̸=n

Ml .

Mode-n fibers: The fibers of higher-order tensors are vectors obtained by specifying
all indices except one. Given a tensor A ∈ RM1×···×MN , a mode-n fiber denoted by
am1...mn−1:mn+1...m N is a vector of length Mn with all the elements having m1, . . . , mn−1,

mn+1, . . . , m N as indices for the 1st, . . . , (n−1)th, (n +2)th, . . . , N th orders. The columns
and the rows of a matrix are the mode-1 and the mode-2 fibers, respectively.

Mode-n product: The mode-n product of a tensor A ∈ RM1×···×MN and a matrix U ∈
RJ×Mn , denoted by A×n U, is a tensor obtained by multiplying all mode-n fibers of A with
the columns of U. The result is a tensor of size M1 × · · ·× Mn−1 × J × Mn+1 × · · ·× MN
having elements as

(A×n U)m1...mn−1 jmn+1...m N =
Mn∑

mn=1

xm1...m N u jmn .

123

Low Rank k
Output
A factor for 
every mode

R
ev

is
ed

Pr
oo

f

J Glob Optim

A few other decomposition models of higher order tensors have been studied, and interested601

readers are referred to [1,61]. The organization of this section is similar to that of Sect. 2,602

and we will show that the NLS algorithms reviewed in Sect. 4 can also be used to factorize603

tensors.604

Let us consider an N th-order tensor A ∈ RM1×···×MN . For an integer K , we are605

interested in finding nonnegative factor matrices H(1), . . . , H(N ) where H(n) ∈RMn×K for606

n = 1, . . . , N such that607

A ≈ [[H(1), . . . , H(N )]], (42)608
609

where610

H(n) =
[

h(n)
1 . . . h(n)

K

]
for n = 1, . . . , N and (43)611

612

613

[[H(1), . . . , H(N )]] =
K∑

k=1

h(1)
k ◦ · · · ◦ h(N )

k . (44)614

615

The ‘◦’ symbol represents the outer product of vectors, and a tensor in the form of616

h(1)
k ◦· · ·◦h

(N )
k is called a rank-one tensor. Model (42) is known as CANDECOMP/PARAFAC617

(CP) [14,43]: In the CP decomposition, A is represented as the sum of K rank-one tensors.618

The smallest integer K for which (42) holds as equality is called the rank of tensor A. The619

CP decomposition reduces to a matrix decomposition if N = 2. The nonnegative CP decom-620

position is obtained by adding nonnegativity constraints to factor matrices H(1), . . . , H(N ).621

A corresponding problem can be written as, for A ∈ RM1×···×MN
+ ,622

min
H(1),...,H(N )

f (H(1), . . . , H(N )) =
∥∥∥A − [[H(1), . . . , H(N )]]

∥∥∥
2

F
,623

624
s.t. H(n) ≥ 0 for n = 1, . . . N . (45)625

626

We discuss algorithms for solving (45) in this section [19,32,54,60]. Toward that end, we627

introduce definitions of some operations of tensors.628

Mode-n matricization: The mode-n matricization of A ∈ RM1×···×MN , denoted by A<n>,629

is a matrix obtained by linearizing all the indices of tensor A except n. Specifically, A<n> is630

a matrix of size Mn × (
∏N

ñ=1,ñ ̸=n Mñ), and the (m1, . . . , m N )th element of A is mapped to631

the (mn, J )th element of A<n> where632

J = 1 +
N∑

j=1

(m j − 1)J j and J j =
j−1∏

l=1,l ̸=n

Ml .633

Mode-n fibers: The fibers of higher-order tensors are vectors obtained by specifying634

all indices except one. Given a tensor A ∈ RM1×···×MN , a mode-n fiber denoted by635

am1...mn−1:mn+1...m N is a vector of length Mn with all the elements having m1, . . . , mn−1,636

mn+1, . . . , m N as indices for the 1st, . . . , (n−1)th, (n +2)th, . . . , N th orders. The columns637

and the rows of a matrix are the mode-1 and the mode-2 fibers, respectively.638

Mode-n product: The mode-n product of a tensor A ∈ RM1×···×MN and a matrix U ∈639

RJ×Mn , denoted by A×n U, is a tensor obtained by multiplying all mode-n fibers of A with640

the columns of U. The result is a tensor of size M1 × · · ·× Mn−1 × J × Mn+1 × · · ·× MN641

having elements as642

(A×n U)m1...mn−1 jmn+1...m N =
Mn∑

mn=1

xm1...m N u jmn .643

123
Journal: 10898-JOGO Article No.: 0035 TYPESET DISK LE CP Disp.:2013/2/8 Pages: 35 Layout: Small

R
ev

is
ed

Pr
oo

f

J Glob Optim

A few other decomposition models of higher order tensors have been studied, and interested601

readers are referred to [1,61]. The organization of this section is similar to that of Sect. 2,602

and we will show that the NLS algorithms reviewed in Sect. 4 can also be used to factorize603

tensors.604

Let us consider an N th-order tensor A ∈ RM1×···×MN . For an integer K , we are605

interested in finding nonnegative factor matrices H(1), . . . , H(N ) where H(n) ∈RMn×K for606

n = 1, . . . , N such that607

A ≈ [[H(1), . . . , H(N )]], (42)608
609

where610

H(n) =
[

h(n)
1 . . . h(n)

K

]
for n = 1, . . . , N and (43)611

612

613

[[H(1), . . . , H(N )]] =
K∑

k=1

h(1)
k ◦ · · · ◦ h(N )

k . (44)614

615

The ‘◦’ symbol represents the outer product of vectors, and a tensor in the form of616

h(1)
k ◦· · ·◦h

(N )
k is called a rank-one tensor. Model (42) is known as CANDECOMP/PARAFAC617

(CP) [14,43]: In the CP decomposition, A is represented as the sum of K rank-one tensors.618

The smallest integer K for which (42) holds as equality is called the rank of tensor A. The619

CP decomposition reduces to a matrix decomposition if N = 2. The nonnegative CP decom-620

position is obtained by adding nonnegativity constraints to factor matrices H(1), . . . , H(N ).621

A corresponding problem can be written as, for A ∈ RM1×···×MN
+ ,622

min
H(1),...,H(N )

f (H(1), . . . , H(N )) =
∥∥∥A − [[H(1), . . . , H(N )]]

∥∥∥
2

F
,623

624
s.t. H(n) ≥ 0 for n = 1, . . . N . (45)625

626

We discuss algorithms for solving (45) in this section [19,32,54,60]. Toward that end, we627

introduce definitions of some operations of tensors.628

Mode-n matricization: The mode-n matricization of A ∈ RM1×···×MN , denoted by A<n>,629

is a matrix obtained by linearizing all the indices of tensor A except n. Specifically, A<n> is630

a matrix of size Mn × (
∏N

ñ=1,ñ ̸=n Mñ), and the (m1, . . . , m N )th element of A is mapped to631

the (mn, J )th element of A<n> where632

J = 1 +
N∑

j=1

(m j − 1)J j and J j =
j−1∏

l=1,l ̸=n

Ml .633

Mode-n fibers: The fibers of higher-order tensors are vectors obtained by specifying634

all indices except one. Given a tensor A ∈ RM1×···×MN , a mode-n fiber denoted by635

am1...mn−1:mn+1...m N is a vector of length Mn with all the elements having m1, . . . , mn−1,636

mn+1, . . . , m N as indices for the 1st, . . . , (n−1)th, (n +2)th, . . . , N th orders. The columns637

and the rows of a matrix are the mode-1 and the mode-2 fibers, respectively.638

Mode-n product: The mode-n product of a tensor A ∈ RM1×···×MN and a matrix U ∈639

RJ×Mn , denoted by A×n U, is a tensor obtained by multiplying all mode-n fibers of A with640

the columns of U. The result is a tensor of size M1 × · · ·× Mn−1 × J × Mn+1 × · · ·× MN641

having elements as642

(A×n U)m1...mn−1 jmn+1...m N =
Mn∑

mn=1

xm1...m N u jmn .643

123
Journal: 10898-JOGO Article No.: 0035 TYPESET DISK LE CP Disp.:2013/2/8 Pages: 35 Layout: Small

k

k

k



20 Presentation_name

Fibers and Slices
Fibers

Mode-1 Fibers Mode-2 Fibers Mode-3 Fibers 

A tensor can be decomposed into the fibers of each mode
(fix all indices but one)

Grey Ballard CA Algorithms 3

Columns Rows Tubes

Mode 1 Fibers Mode 2 Fibers Mode 3 Fibers

Fix all 
indices but 

one

Slices

458 TAMARA G. KOLDA AND BRETT W. BADER

(a) Mode-1 (column) fibers: x:jk (b) Mode-2 (row) fibers: xi:k (c) Mode-3 (tube) fibers: xij:

Fig. 2.1 Fibers of a 3rd-order tensor.

(a) Horizontal slices: Xi:: (b) Lateral slices: X:j: (c) Frontal slices: X::k (or Xk)

Fig. 2.2 Slices of a 3rd-order tensor.

A. The inner product of two same-sized tensors X, Y 2 RI1⇥I2⇥···⇥IN is the sum of
the products of their entries, i.e.,

�X, Y � =
I1X

i1=1

I2X

i2=1

· · ·
INX

iN=1

xi1i2···iN yi1i2···iN .

It follows immediately that �X, X � = kX k2.

2.1. Rank-One Tensors. An N -way tensor X 2 RI1⇥I2⇥···⇥IN is rank one if it
can be written as the outer product of N vectors, i.e.,

X = a(1) � a(2) � · · · � a(N).

The symbol “�” represents the vector outer product. This means that each element
of the tensor is the product of the corresponding vector elements:

xi1i2···iN = a(1)
i1

a(2)
i2

· · · a(N)
iN

for all 1  in  In.

Figure 2.3 illustrates X = a � b � c, a third-order rank-one tensor.

2.2. Symmetry and Tensors. A tensor is called cubical if every mode is the same
size, i.e., X 2 RI⇥I⇥I⇥···⇥I [49]. A cubical tensor is called supersymmetric (though

D
ow

nl
oa

de
d 

09
/0

5/
13

 to
 1

98
.2

06
.2

19
.3

8.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

A tensor can also be decomposed into the slices of each mode
(fix one index)

Grey Ballard CA Algorithms 4

Fix one index

Thanks Bader and T. Kolda



21 Presentation_name

Some tensor operations

J Glob Optim (2014) 58:285–319 303

In particular, the mode-n product of A and a vector u ∈ RMn is a tensor of size M1 × · · ·×
Mn−1 × Mn+1 × · · ·× MN .
Khatri-Rao product: The Khatri-Rao product of two matrices A ∈ RJ1×L and B ∈ RJ2×L ,
denoted by A⊙ B ∈ R(J1 J2)×L , is defined as

A⊙ B =

⎡

⎢⎢⎢⎣

a11b1 a12b2 · · · a1L bL
a21b1 a22b2 · · · a2L bL

...
...

. . .
...

aJ11b1 aJ12b2 · · · aJ1 L bL

⎤

⎥⎥⎥⎦
.

5.1 BCD with N matrix blocks

A simple BCD method can be designed for (45) considering each of the factor matrics
H(1), . . . , H(N ) as a block. Using notations introduced above, approximation model (42) can
be written as, for any n ∈ {1, . . . , N },

A<n> ≈ H(n)
(

B(n)
)T

, (46)

where

B(n) = H(N ) ⊙ · · ·⊙H(n+1) ⊙H(n−1) ⊙ · · ·⊙H(1)

∈ R
(∏N

ñ=1,ñ ̸=n Mñ

)
×K

. (47)

Representation in (46) simplifies the treatment of this N matrix block case. After
H(2), . . . , H(N ) are initialized with nonnegative elements, the following subproblem is solved
iteratively for n = 1, . . . N :

H(n) ← arg min
H≥0

∥∥∥B(n)HT −
(
A<n>

)T
∥∥∥

2

F
. (48)

Since subproblem (48) is an NLS problem, as in the matrix factorization case, this matrix-
block BCD method is called the alternating nonnegative least squares (ANLS) framework
[32,54,60]. The convergence property of the BCD method in Theorem 1 yields the following
corollary.

Corollary 5 If a unique solution exists for (48) and is attained for n = 1, . . . , N, then every

limit point of the sequence
{(

H(1), . . . , H(N )
)(i)

}
generated by the ANLS framework is a

stationary point of (45).

In particular, if each B(n) is of full column rank, the subproblem has a unique solution.
Algorithms for the NLS subproblems discussed in Sect. 4 can be used to solve (48).

For higher order tensors, the number of rows in B(n) and (A<n>)T , i.e.,
∏N

ñ=1,ñ ̸=n Mñ , can
be quite large. However, often B(n) and (A<n>)T do not need to be explicitly constructed. In
most algorithms explained in Sect. 4, it is enough to have B(n)T (A<n>)T and

(
B(n)

)T B(n).
It is easy to verify that B(n)T (A<n>)T can be obtained by successive mode-n products:

B(n)T (
A<n>

)T = A×1 H(1) . . .×(n−1) H(n−1)

×(n)H(n) . . .×(N ) H(N ). (49)

123

302 J Glob Optim (2014) 58:285–319

A few other decomposition models of higher order tensors have been studied, and interested
readers are referred to [1,61]. The organization of this section is similar to that of Sect. 2,
and we will show that the NLS algorithms reviewed in Sect. 4 can also be used to factorize
tensors.

Let us consider an N th-order tensor A ∈ RM1×···×MN . For an integer K , we are
interested in finding nonnegative factor matrices H(1), . . . , H(N ) where H(n) ∈RMn×K for
n = 1, . . . , N such that

A ≈ [[H(1), . . . , H(N )]], (42)

where

H(n) =
[

h(n)
1 . . . h(n)

K

]
for n = 1, . . . , N and (43)

[[H(1), . . . , H(N )]] =
K∑

k=1

h(1)
k ◦ · · · ◦ h(N )

k . (44)

The ‘◦’ symbol represents the outer product of vectors, and a tensor in the form of
h(1)

k ◦· · ·◦h
(N )
k is called a rank-one tensor. Model (42) is known as CANDECOMP/PARAFAC

(CP) [14,43]: In the CP decomposition, A is represented as the sum of K rank-one tensors.
The smallest integer K for which (42) holds as equality is called the rank of tensor A. The
CP decomposition reduces to a matrix decomposition if N = 2. The nonnegative CP decom-
position is obtained by adding nonnegativity constraints to factor matrices H(1), . . . , H(N ).
A corresponding problem can be written as, for A ∈ RM1×···×MN

+ ,

min
H(1),...,H(N )

f (H(1), . . . , H(N )) =
∥∥∥A − [[H(1), . . . , H(N )]]

∥∥∥
2

F
,

s.t. H(n) ≥ 0 for n = 1, . . . N . (45)

We discuss algorithms for solving (45) in this section [19,32,54,60]. Toward that end, we
introduce definitions of some operations of tensors.

Mode-n matricization: The mode-n matricization of A ∈ RM1×···×MN , denoted by A<n>,
is a matrix obtained by linearizing all the indices of tensor A except n. Specifically, A<n> is
a matrix of size Mn × (

∏N
ñ=1,ñ ̸=n Mñ), and the (m1, . . . , m N )th element of A is mapped to

the (mn, J )th element of A<n> where

J = 1 +
N∑

j=1

(m j − 1)J j and J j =
j−1∏

l=1,l ̸=n

Ml .

Mode-n fibers: The fibers of higher-order tensors are vectors obtained by specifying
all indices except one. Given a tensor A ∈ RM1×···×MN , a mode-n fiber denoted by
am1...mn−1:mn+1...m N is a vector of length Mn with all the elements having m1, . . . , mn−1,

mn+1, . . . , m N as indices for the 1st, . . . , (n−1)th, (n +2)th, . . . , N th orders. The columns
and the rows of a matrix are the mode-1 and the mode-2 fibers, respectively.

Mode-n product: The mode-n product of a tensor A ∈ RM1×···×MN and a matrix U ∈
RJ×Mn , denoted by A×n U, is a tensor obtained by multiplying all mode-n fibers of A with
the columns of U. The result is a tensor of size M1 × · · ·× Mn−1 × J × Mn+1 × · · ·× MN
having elements as

(A×n U)m1...mn−1 jmn+1...m N =
Mn∑

mn=1

xm1...m N u jmn .

123



22 Presentation_name

NMF vs NTF

NMF NTF
!"#,%"#&'(| * −,- |./ %(1)"#

&'(||* − -(3), … , -(() ||./
∀6 = 1,… , 9

- MTTKRP

J Glob Optim (2014) 58:285–319 303

In particular, the mode-n product of A and a vector u ∈ RMn is a tensor of size M1 × · · ·×
Mn−1 × Mn+1 × · · ·× MN .
Khatri-Rao product: The Khatri-Rao product of two matrices A ∈ RJ1×L and B ∈ RJ2×L ,
denoted by A⊙ B ∈ R(J1 J2)×L , is defined as

A⊙ B =

⎡

⎢⎢⎢⎣

a11b1 a12b2 · · · a1L bL
a21b1 a22b2 · · · a2L bL

...
...

. . .
...

aJ11b1 aJ12b2 · · · aJ1 L bL

⎤

⎥⎥⎥⎦
.

5.1 BCD with N matrix blocks

A simple BCD method can be designed for (45) considering each of the factor matrics
H(1), . . . , H(N ) as a block. Using notations introduced above, approximation model (42) can
be written as, for any n ∈ {1, . . . , N },

A<n> ≈ H(n)
(

B(n)
)T

, (46)

where

B(n) = H(N ) ⊙ · · ·⊙H(n+1) ⊙H(n−1) ⊙ · · ·⊙H(1)

∈ R
(∏N

ñ=1,ñ ̸=n Mñ

)
×K

. (47)

Representation in (46) simplifies the treatment of this N matrix block case. After
H(2), . . . , H(N ) are initialized with nonnegative elements, the following subproblem is solved
iteratively for n = 1, . . . N :

H(n) ← arg min
H≥0

∥∥∥B(n)HT −
(
A<n>

)T
∥∥∥

2

F
. (48)

Since subproblem (48) is an NLS problem, as in the matrix factorization case, this matrix-
block BCD method is called the alternating nonnegative least squares (ANLS) framework
[32,54,60]. The convergence property of the BCD method in Theorem 1 yields the following
corollary.

Corollary 5 If a unique solution exists for (48) and is attained for n = 1, . . . , N, then every

limit point of the sequence
{(

H(1), . . . , H(N )
)(i)

}
generated by the ANLS framework is a

stationary point of (45).

In particular, if each B(n) is of full column rank, the subproblem has a unique solution.
Algorithms for the NLS subproblems discussed in Sect. 4 can be used to solve (48).

For higher order tensors, the number of rows in B(n) and (A<n>)T , i.e.,
∏N

ñ=1,ñ ̸=n Mñ , can
be quite large. However, often B(n) and (A<n>)T do not need to be explicitly constructed. In
most algorithms explained in Sect. 4, it is enough to have B(n)T (A<n>)T and

(
B(n)

)T B(n).
It is easy to verify that B(n)T (A<n>)T can be obtained by successive mode-n products:

B(n)T (
A<n>

)T = A×1 H(1) . . .×(n−1) H(n−1)

×(n)H(n) . . .×(N ) H(N ). (49)

123

Alternating-Updating NMF Algorithms(AU-NMF)

ANLS-BPP

W argmin
W̃>0

���A� W̃H
���
F
,

H argmin
H̃>0

���A�WH̃
���
F
.

HALS Update

wi  

wi +

(AHT )i �W(HHT )i

(HHT )ii

�

+

hi  

hi +

(WTA)i � (WTW)iH

(WTW)ii

�

+

MU Update

wij  wij
(AHT )ij

(WHHT )ij
hij  hij

(WTA)ij
(WTWH)ij

AU-NMF Algorithm

Require: A is an m ⇥ n matrix, k is rank of
approximation

1: Initialize H with a non-negative matrix

in Rn⇥k
+ .

2: while stopping criteria not satisfied do

3: Update W using HHT and AHT

4: Update H using WTW and WTA

5: end while

0 20 40

0

0.2

0.4

0.6

0.8

Iterations

R
el
.E
rr
or

MU
HALS
NBPP

9 / 21

J Glob Optim (2014) 58:285–319 303

In particular, the mode-n product of A and a vector u ∈ RMn is a tensor of size M1 × · · ·×
Mn−1 × Mn+1 × · · ·× MN .
Khatri-Rao product: The Khatri-Rao product of two matrices A ∈ RJ1×L and B ∈ RJ2×L ,
denoted by A⊙ B ∈ R(J1 J2)×L , is defined as

A⊙ B =

⎡

⎢⎢⎢⎣

a11b1 a12b2 · · · a1L bL
a21b1 a22b2 · · · a2L bL

...
...

. . .
...

aJ11b1 aJ12b2 · · · aJ1 L bL

⎤

⎥⎥⎥⎦
.

5.1 BCD with N matrix blocks

A simple BCD method can be designed for (45) considering each of the factor matrics
H(1), . . . , H(N ) as a block. Using notations introduced above, approximation model (42) can
be written as, for any n ∈ {1, . . . , N },

A<n> ≈ H(n)
(

B(n)
)T

, (46)

where

B(n) = H(N ) ⊙ · · ·⊙H(n+1) ⊙H(n−1) ⊙ · · ·⊙H(1)

∈ R
(∏N

ñ=1,ñ ̸=n Mñ

)
×K

. (47)

Representation in (46) simplifies the treatment of this N matrix block case. After
H(2), . . . , H(N ) are initialized with nonnegative elements, the following subproblem is solved
iteratively for n = 1, . . . N :

H(n) ← arg min
H≥0

∥∥∥B(n)HT −
(
A<n>

)T
∥∥∥

2

F
. (48)

Since subproblem (48) is an NLS problem, as in the matrix factorization case, this matrix-
block BCD method is called the alternating nonnegative least squares (ANLS) framework
[32,54,60]. The convergence property of the BCD method in Theorem 1 yields the following
corollary.

Corollary 5 If a unique solution exists for (48) and is attained for n = 1, . . . , N, then every

limit point of the sequence
{(

H(1), . . . , H(N )
)(i)

}
generated by the ANLS framework is a

stationary point of (45).

In particular, if each B(n) is of full column rank, the subproblem has a unique solution.
Algorithms for the NLS subproblems discussed in Sect. 4 can be used to solve (48).

For higher order tensors, the number of rows in B(n) and (A<n>)T , i.e.,
∏N

ñ=1,ñ ̸=n Mñ , can
be quite large. However, often B(n) and (A<n>)T do not need to be explicitly constructed. In
most algorithms explained in Sect. 4, it is enough to have B(n)T (A<n>)T and

(
B(n)

)T B(n).
It is easy to verify that B(n)T (A<n>)T can be obtained by successive mode-n products:

B(n)T (
A<n>

)T = A×1 H(1) . . .×(n−1) H(n−1)

×(n)H(n) . . .×(N ) H(N ). (49)

123

Fig. 1: Naive-Parallel-AUNMF. Note that both rows and columns of A are 1D distributed. The
algorithm works by iteratively (all-)gathering the entire fixed factor matrix to each processor and
then performing the Local Update Computations to update the variable factor matrix.

the algorithm-specific Local Update Computations for m/p rows of W. Likewise, the computation
at line 6 consists of computing WT Ai, WT W, and performing the Local Update Computations for
n/p columns of H. In the dense case, this amounts to 4mnk/p + (m + n)k2 + F(m/p, n/p, k) flops.
In the sparse case, processor i performs 2(nnz(Ai) + nnz(Ai))k flops to compute AiHT and WT Ai
instead of 4mnk/p.

5.1.2. Communication Cost. The size of W is mk words, and the size of H is nk words. Thus, the
communication cost of the all-gathers at lines 3 and 5, based on the expression given in Section 2.3
is ↵ · 2 log p + � · (m + n)k.

5.1.3. Memory Requirements. The local memory requirement includes storing each processor’s
part of matrices A, W, and H. In the case of dense A, this is 2mn/p + (m + n)k/p words, as A is
stored twice; in the sparse case, processor i requires nnz(Ai) + nnz(Ai) words for the input matrix
and (m + n)k/p words for the output factor matrices. Local memory is also required for storing
temporary matrices W and H of size (m + n)k words.

5.2. MPI-FAUN
We present our proposed algorithm, MPI-FAUN, as Algorithm 3. The main ideas of the algorithm
are to (1) exploit the independence of Local Update Computations for rows of W and columns of
H and (2) use communication-optimal matrix multiplication algorithms to set up the Local Update
Computations. The naive approach (Algorithm 2) shares the first property, by parallelizing over

9

304 J Glob Optim (2014) 58:285–319

In addition,
(
B(n)

)T B(n) can be obtained as

(
B(n)

)T
B(n) =

N⊗

ñ=1,ñ ̸=n

(
H(ñ)

)T
H(ñ), (50)

where
⊗

represents element-wise multiplication.

5.2 BCD with K N vector blocks

Another way to apply the BCD framework to (45) is to treat each column of H(1), . . . , H(N )

as a block. The columns are updated by solving, for n = 1, . . . N and for k = 1, . . . , K ,

h(n)
k ←

arg min
h≥0

∥∥∥[[h(1)
k , . . . , h(n−1)

k , h, h(n+1)
k , · · · , h(N )

k ]]−Rk

∥∥∥
2

F
. (51)

where

Rk = A −
K∑

k̃=1,k̃ ̸=k

h(1)

k̃
◦ · · · ◦ h(N )

k̃
.

Using matrix notations, problem (51) can be rewritten as

h(n)
k ← arg min

h≥0

∥∥∥b(n)
k hT −

(
R<n>

k
)T

∥∥∥
2

F
, (52)

where R<n>
k is the mode-n matricization of Rk and

b(n)
k = h(N )

k ⊙ · · ·⊙ h(n+1)
k ⊙ h(n−1)

k ⊙ · · ·⊙ h(1)
k

∈ R
(∏N

ñ=1,ñ ̸=n Mñ

)
×1

. (53)

This vector-block BCD method corresponds to the HALS method by Cichocki et al. for
NTF [19,22]. The convergence property in Theorem 1 yields the following corollary.

Corollary 6 If a unique solution exists for (52) and is attained for n = 1, . . . , N and for

k = 1, . . . , K , every limit point of the sequence
{(

H(1), . . . , H(N )
)(i)

}
generated by the

vector-block BCD method is a stationary point of (45).

Using Theorem 2, the solution of (52) is

h(n)
k ←

[
R<n>

k b(n)
k

]

+∥∥∥b(n)
k

∥∥∥
2

2

. (54)

Solution (54) can be evaluated without constructing R<n>
k . Observe that

(
b(n)

k

)T
b(n)

k =
N∏

ñ=1,ñ ̸=n

(
h(ñ)

k

)T
h(ñ)

k , (55)

123

J Glob Optim (2014) 58:285–319 303

In particular, the mode-n product of A and a vector u ∈ RMn is a tensor of size M1 × · · ·×
Mn−1 × Mn+1 × · · ·× MN .
Khatri-Rao product: The Khatri-Rao product of two matrices A ∈ RJ1×L and B ∈ RJ2×L ,
denoted by A⊙ B ∈ R(J1 J2)×L , is defined as

A⊙ B =

⎡

⎢⎢⎢⎣

a11b1 a12b2 · · · a1L bL
a21b1 a22b2 · · · a2L bL

...
...

. . .
...

aJ11b1 aJ12b2 · · · aJ1 L bL

⎤

⎥⎥⎥⎦
.

5.1 BCD with N matrix blocks

A simple BCD method can be designed for (45) considering each of the factor matrics
H(1), . . . , H(N ) as a block. Using notations introduced above, approximation model (42) can
be written as, for any n ∈ {1, . . . , N },

A<n> ≈ H(n)
(

B(n)
)T

, (46)

where

B(n) = H(N ) ⊙ · · ·⊙H(n+1) ⊙H(n−1) ⊙ · · ·⊙H(1)

∈ R
(∏N

ñ=1,ñ ̸=n Mñ

)
×K

. (47)

Representation in (46) simplifies the treatment of this N matrix block case. After
H(2), . . . , H(N ) are initialized with nonnegative elements, the following subproblem is solved
iteratively for n = 1, . . . N :

H(n) ← arg min
H≥0

∥∥∥B(n)HT −
(
A<n>

)T
∥∥∥

2

F
. (48)

Since subproblem (48) is an NLS problem, as in the matrix factorization case, this matrix-
block BCD method is called the alternating nonnegative least squares (ANLS) framework
[32,54,60]. The convergence property of the BCD method in Theorem 1 yields the following
corollary.

Corollary 5 If a unique solution exists for (48) and is attained for n = 1, . . . , N, then every

limit point of the sequence
{(

H(1), . . . , H(N )
)(i)

}
generated by the ANLS framework is a

stationary point of (45).

In particular, if each B(n) is of full column rank, the subproblem has a unique solution.
Algorithms for the NLS subproblems discussed in Sect. 4 can be used to solve (48).

For higher order tensors, the number of rows in B(n) and (A<n>)T , i.e.,
∏N

ñ=1,ñ ̸=n Mñ , can
be quite large. However, often B(n) and (A<n>)T do not need to be explicitly constructed. In
most algorithms explained in Sect. 4, it is enough to have B(n)T (A<n>)T and

(
B(n)

)T B(n).
It is easy to verify that B(n)T (A<n>)T can be obtained by successive mode-n products:

B(n)T (
A<n>

)T = A×1 H(1) . . .×(n−1) H(n−1)

×(n)H(n) . . .×(N ) H(N ). (49)

123

Khatri-Rao Prod



23 Presentation_name

Distributed NCP Algorithm
• N-D Process Grid for N modes
• Input Tensor is distributed as
• Factors are all_gathered as
that is redundant across
• where  
•
•
•
•
• Compute from S and W using local NLS

Algorithm 1 [H(1), . . . ,H(N)] = HPC-NTF(A, k)

Require: A is an M1× · · ·×MN tensor distributed across a P1× · · ·×PN grid
of P processors, k is rank of approximation

Require: Local tensor: Ap1···pN is (M1/P1)× · · ·× (MN/PN ) and is owned by
processor (p1, . . . , pN )

1: for i = 2 to N do
2: Initialize X of dimensions (Mi/P )× k randomly
3: U = Local-SYRK(X)
4: G(i) = All-Reduce(U, (⋆, . . . , ⋆))
5: H(i)

pi
= All-Gather(X, (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆))

6: end for
7: while not converged do
8: for i = 1 to N do

% Compute H(i)

9: V = Local-MTTKRP(Ap1···pN , {H(n)
pn

}, i)
10: W = Reduce-Scatter(V, (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆))

11: S =!
n̸=i

G(i)

12: compute X from S and W using local NLS solver
13: U = Local-SYRK(X)
14: G(i) = All-Reduce(U, (⋆, . . . , ⋆))
15: H(i)

pi
= All-Gather(X, (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆))

16: end for
17: end while
Ensure: A ≈

!
H(1), . . . ,H(M)

"

Ensure:
Require: Local matrices: H(i)

pi
is (Mi/Pi) × k and is redundantly owned by

processors (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆), for 1 " i " N

2

Algorithm 1 [H(1), . . . ,H(N)] = HPC-NTF(A, k)

Require: A is an M1× · · ·×MN tensor distributed across a P1× · · ·×PN grid
of P processors, k is rank of approximation

Require: Local tensor: Ap1···pN is (M1/P1)× · · ·× (MN/PN ) and is owned by
processor (p1, . . . , pN )

1: for i = 2 to N do
2: Initialize X of dimensions (Mi/P )× k randomly
3: U = Local-SYRK(X)
4: G(i) = All-Reduce(U, (⋆, . . . , ⋆))
5: H(i)

pi
= All-Gather(X, (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆))

6: end for
7: while not converged do
8: for i = 1 to N do

% Compute H(i)

9: V = Local-MTTKRP(Ap1···pN , {H(n)
pn

}, i)
10: W = Reduce-Scatter(V, (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆))

11: S =!
n̸=i

G(i)

12: compute X from S and W using local NLS solver
13: U = Local-SYRK(X)
14: G(i) = All-Reduce(U, (⋆, . . . , ⋆))
15: H(i)

pi
= All-Gather(X, (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆))

16: end for
17: end while
Ensure: A ≈

!
H(1), . . . ,H(M)

"

Ensure:
Require: Local matrices: H(i)

pi
is (Mi/Pi) × k and is redundantly owned by

processors (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆), for 1 " i " N

2

Algorithm 1 [H(1), . . . ,H(N)] = HPC-NTF(A, k)

Require: A is an M1× · · ·×MN tensor distributed across a P1× · · ·×PN grid
of P processors, k is rank of approximation

Require: Local tensor: Ap1···pN is (M1/P1)× · · ·× (MN/PN ) and is owned by
processor (p1, . . . , pN )

1: for i = 2 to N do
2: Initialize X of dimensions (Mi/P )× k randomly
3: U = Local-SYRK(X)
4: G(i) = All-Reduce(U, (⋆, . . . , ⋆))
5: H(i)

pi
= All-Gather(X, (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆))

6: end for
7: while not converged do
8: for i = 1 to N do

% Compute H(i)

9: V = Local-MTTKRP(Ap1···pN , {H(n)
pn

}, i)
10: W = Reduce-Scatter(V, (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆))

11: S =!
n̸=i

G(i)

12: compute X from S and W using local NLS solver
13: U = Local-SYRK(X)
14: G(i) = All-Reduce(U, (⋆, . . . , ⋆))
15: H(i)

pi
= All-Gather(X, (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆))

16: end for
17: end while
Ensure: A ≈

!
H(1), . . . ,H(M)

"

Ensure:
Require: Local matrices: H(i)

pi
is (Mi/Pi) × k and is redundantly owned by

processors (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆), for 1 " i " N

2

Algorithm 1 [H(1), . . . ,H(N)] = HPC-NTF(A, k)

Require: A is an M1× · · ·×MN tensor distributed across a P1× · · ·×PN grid
of P processors, k is rank of approximation

Require: Local tensor: Ap1···pN is (M1/P1)× · · ·× (MN/PN ) and is owned by
processor (p1, . . . , pN )

1: for i = 2 to N do
2: Initialize X of dimensions (Mi/P )× k randomly
3: U = Local-SYRK(X)
4: G(i) = All-Reduce(U, (⋆, . . . , ⋆))
5: H(i)

pi
= All-Gather(X, (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆))

6: end for
7: while not converged do
8: for i = 1 to N do

% Compute H(i)

9: V = Local-MTTKRP(Ap1···pN , {H(n)
pn

}, i)
10: W = Reduce-Scatter(V, (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆))

11: S =!
n̸=i

G(i)

12: compute X from S and W using local NLS solver
13: U = Local-SYRK(X)
14: G(i) = All-Reduce(U, (⋆, . . . , ⋆))
15: H(i)

pi
= All-Gather(X, (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆))

16: end for
17: end while
Ensure: A ≈

!
H(1), . . . ,H(M)

"

Ensure:
Require: Local matrices: H(i)

pi
is (Mi/Pi) × k and is redundantly owned by

processors (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆), for 1 " i " N

2

Algorithm 1 [H(1), . . . ,H(N)] = HPC-NTF(A, k)

Require: A is an M1× · · ·×MN tensor distributed across a P1× · · ·×PN grid
of P processors, k is rank of approximation

Require: Local tensor: Ap1···pN is (M1/P1)× · · ·× (MN/PN ) and is owned by
processor (p1, . . . , pN )

1: for i = 2 to N do
2: Initialize X of dimensions (Mi/P )× k randomly
3: U = Local-SYRK(X)
4: G(i) = All-Reduce(U, (⋆, . . . , ⋆))
5: H(i)

pi
= All-Gather(X, (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆))

6: end for
7: while not converged do
8: for i = 1 to N do

% Compute H(i)

9: V = Local-MTTKRP(Ap1···pN , {H(n)
pn

}, i)
10: W = Reduce-Scatter(V, (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆))

11: S =!
n̸=i

G(i)

12: compute X from S and W using local NLS solver
13: U = Local-SYRK(X)
14: G(i) = All-Reduce(U, (⋆, . . . , ⋆))
15: H(i)

pi
= All-Gather(X, (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆))

16: end for
17: end while
Ensure: A ≈

!
H(1), . . . ,H(M)

"

Ensure:
Require: Local matrices: H(i)

pi
is (Mi/Pi) × k and is redundantly owned by

processors (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆), for 1 " i " N

2

Algorithm 1 [H(1), . . . ,H(N)] = HPC-NTF(A, k)

Require: A is an M1× · · ·×MN tensor distributed across a P1× · · ·×PN grid
of P processors, k is rank of approximation

Require: Local tensor: Ap1···pN is (M1/P1)× · · ·× (MN/PN ) and is owned by
processor (p1, . . . , pN )

1: for i = 2 to N do
2: Initialize X of dimensions (Mi/P )× k randomly
3: U = Local-SYRK(X)
4: G(i) = All-Reduce(U, (⋆, . . . , ⋆))
5: H(i)

pi
= All-Gather(X, (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆))

6: end for
7: while not converged do
8: for i = 1 to N do

% Compute H(i)

9: V = Local-MTTKRP(Ap1···pN , {H(n)
pn

}, i)
10: W = Reduce-Scatter(V, (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆))

11: S =!
n̸=i

G(i)

12: compute X from S and W using local NLS solver
13: U = Local-SYRK(X)
14: G(i) = All-Reduce(U, (⋆, . . . , ⋆))
15: H(i)

pi
= All-Gather(X, (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆))

16: end for
17: end while
Ensure: A ≈

!
H(1), . . . ,H(M)

"

Ensure:
Require: Local matrices: H(i)

pi
is (Mi/Pi) × k and is redundantly owned by

processors (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆), for 1 " i " N

2

Algorithm 1 [H(1), . . . ,H(N)] = HPC-NTF(A, k)

Require: A is an M1× · · ·×MN tensor distributed across a P1× · · ·×PN grid
of P processors, k is rank of approximation

Require: Local tensor: Ap1···pN is (M1/P1)× · · ·× (MN/PN ) and is owned by
processor p = (p1, . . . , pN )

Require: Local memory: space for H(i)
pi

of size (Mi/Pi)× k, for 1 ! i ! N
1: for i = 2 to N do
2: Initialize H(i)

p of dimensions (Mi/P )× k randomly

3: U = Local-SYRK(H(i)
p )

4: G(i) = All-Reduce(U, (⋆, . . . , ⋆))
5: H(i)

pi
= All-Gather(H(i)

p , (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆))
6: end for
7: while not converged do
8: for i = 1 to N do

% Compute H(i)

9: V = Local-MTTKRP(Ap1···pN , {H(n)
pn

}, i)
10: W = Reduce-Scatter(V, (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆))

11: S ="
n̸=i

G(i)

12: compute H(i)
p from S and W using local NLS solver

13: U = Local-SYRK(H(i)
p )

14: G(i) = All-Reduce(U, (⋆, . . . , ⋆))
15: H(i)

pi
= All-Gather(H(i)

p , (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆))
16: end for
17: end while
Ensure: A ≈

!
H(1), . . . ,H(M)

"

Ensure: Local matrices: H(i)
p is (Mi/P ) × k and owned by processor p =

(p1, . . . , pN ), for 1 ! i ! N

2

Algorithm 1 [H(1), . . . ,H(N)] = HPC-NTF(A, k)

Require: A is an M1× · · ·×MN tensor distributed across a P1× · · ·×PN grid
of P processors, k is rank of approximation

Require: Local tensor: Ap1···pN is (M1/P1)× · · ·× (MN/PN ) and is owned by
processor p = (p1, . . . , pN )

Require: Local memory: space for H(i)
pi

of size (Mi/Pi)× k, for 1 ! i ! N
1: for i = 2 to N do
2: Initialize H(i)

p of dimensions (Mi/P )× k randomly

3: U = Local-SYRK(H(i)
p )

4: G(i) = All-Reduce(U, (⋆, . . . , ⋆))
5: H(i)

pi
= All-Gather(H(i)

p , (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆))
6: end for
7: while not converged do
8: for i = 1 to N do

% Compute H(i)

9: V = Local-MTTKRP(Ap1···pN , {H(n)
pn

}, i)
10: W = Reduce-Scatter(V, (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆))

11: S ="
n̸=i

G(i)

12: compute H(i)
p from S and W using local NLS solver

13: U = Local-SYRK(H(i)
p )

14: G(i) = All-Reduce(U, (⋆, . . . , ⋆))
15: H(i)

pi
= All-Gather(H(i)

p , (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆))
16: end for
17: end while
Ensure: A ≈

!
H(1), . . . ,H(M)

"

Ensure: Local matrices: H(i)
p is (Mi/P ) × k and owned by processor p =

(p1, . . . , pN ), for 1 ! i ! N

2

Algorithm 1 [H(1), . . . ,H(N)] = HPC-NTF(A, k)

Require: A is an M1× · · ·×MN tensor distributed across a P1× · · ·×PN grid
of P processors, k is rank of approximation

Require: Local tensor: Ap1···pN is (M1/P1)× · · ·× (MN/PN ) and is owned by
processor p = (p1, . . . , pN )

Require: Local memory: space for H(i)
pi

of size (Mi/Pi)× k, for 1 ! i ! N
1: for i = 2 to N do
2: Initialize H(i)

p of dimensions (Mi/P )× k randomly

3: U = Local-SYRK(H(i)
p )

4: G(i) = All-Reduce(U, (⋆, . . . , ⋆))
5: H(i)

pi
= All-Gather(H(i)

p , (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆))
6: end for
7: while not converged do
8: for i = 1 to N do

% Compute H(i)

9: V = Local-MTTKRP(Ap1···pN , {H(n)
pn

}, i)
10: W = Reduce-Scatter(V, (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆))

11: S ="
n̸=i

G(i)

12: compute H(i)
p from S and W using local NLS solver

13: U = Local-SYRK(H(i)
p )

14: G(i) = All-Reduce(U, (⋆, . . . , ⋆))
15: H(i)

pi
= All-Gather(H(i)

p , (⋆, . . . , ⋆, pi, ⋆, . . . , ⋆))
16: end for
17: end while
Ensure: A ≈

!
H(1), . . . ,H(M)

"

Ensure: Local matrices: H(i)
p is (Mi/P ) × k and owned by processor p =

(p1, . . . , pN ), for 1 ! i ! N

2



24 Presentation_name

Conclusion and Future works

• Conclusion
– MPI-FAUN
– Distributed NTF

• Future work
– Benchmarking on very large datasets
– Optimal Communication
– Interpretation for scientific datasets
– Sparse Tensor with Hypergraph


