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Motivation

* Observed features/collected metrics/independent
variable/predictor cannot explain the dependent
variable/response/outcome variable

* Eg., temperature, humidity, precipitation, etc. are
iInsufficient to explain the probability to rain

* |t is impossible to collect all the features that explain
an outcome

« Sometimes, statistically significant latent features
contained in the factors offer explanation
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NHOT lllustration: Hyper Spectral Image

Spaceborne

Red (R
ed (R) RGB Image hyperspectral sensor

Green (G)

Swath width of

Blue (B) imaging sensor

Earth
surface

Intensity

B G R
Wavelength 1

B85
T2 . ;
A 2 aé Each pixel contains
9 s a sampled spectrum
2 that is used to identify
‘§ the materials presentin
= ' the pixel by their
& reflectance
> » Spectral images
uv NIR X taken simultaneously

Wavelength A

http://www.harrisgeospatial.com/Portals/0/blogs/imageryspeaks/USGS%20PRISM/BlogPost Figure1.jpg

Lu G, Fei B; Medical hyperspectral imaging: a review. J. Biomed. Opt. 0001;19(1):010901. doi:10.1117/1.JB%®M{(ﬁ(IDGE
National Laboratory



http://www.harrisgeospatial.com/Portals/0/blogs/imageryspeaks/USGS%20PRISM/BlogPost_Figure1.jpg
http://www.harrisgeospatial.com/Portals/0/blogs/imageryspeaks/USGS%20PRISM/BlogPost_Figure1.jpg

Dimensionality Reduction in Scientific Data

* Multimodal characterization of materials —

comprehensive characterization from chemical composition

to functional properties on the nanoscale
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Example 1 : NMF vs. PCA
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Both PCA and NMF are insufficient
They do not consider the neighbourhood information
To consider this information, we use regularization
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Example 2 : Video Data

Input Frame(A) Background (WH) Moving Object A — WH
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Matrix Factorization (MF)
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Alternating Updating NMF (AUNMF)

Given A, find W, H such that  w=o#26l|A — WH||p AUNMF-Algorithm

ANLS-BPP (Alternating NLS —
Block Principal Pivoting)

Require: A is an m X n matrix, k is rank of
approximation

. - 1: Initialize H with a non-negative matrix
W al;f%inom ‘A a WH‘ F’ 2: while stopping criteria not satisfied do
g . 3 Update W using HH' and AHT
H < argmin ‘A - WHHF- 4: Update H using W™ W and W' A
H=0 5: end while
HALS (Hierarchical Alternating Least Squares)
j i, (AHT) —W(HHT)’] 0.8] — MU |
W lw * (HHT); N — HALS
(WTA),' _ (WTW),H 0.6 —— NBPP ||
h; < |h; + T 5
( W)ii 4 LE 04l |
3
Multiplicative Update (MU) 0.2} |
(AHT) (WTA) o \ \ \ i
Wij < WU—U hU — hu—u 0 20 40
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Naive Parallel ANLS-BPP
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MPI-FAUN

- Scalability is achieved by reducing the
communication cost

* Intelligent tensor distribution so that entire
computation happen in-situ

» Operations sequencing
* Collective MPI calls to reduce latency
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1D NMF - Long and Thin matrices
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MPI-FAUN Framework
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Strong Scaling

Sparse Realworld
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MPI-FAUN

* Distributed Communication avoiding NMF

Algorithms

* https://qgithub.com/ramkikannan/nmflibrary

* https://arxiv.org/abs/1609.09154

* Miniapp and benchmarked on OLCF Platforms

Dataset Type Matrix size NMF Time

Video Dense 1 Million x 13,824 5.73 seconds
Stack Exchange | Sparse 627,047 x 12 Million 67 seconds
Webbase-2001 | Sparse | 118 Million x 118 Million | 25 minutes
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Higher Order Tensors
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Existing DR for NHOT - Matricization

= ol - L

TN

*  Works only when some of the dimensions are independent
Matricizing NHOT is non-trivial
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Non-negative Tensor Factorization
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Novelty : Most of the tensor operations becomes infeasible on higher orders. Higher order tensors
are going to be the defacto and we should be prepared with algorithms that can help us compute

and interpret these higher order data.

Cichocki, Andrzej, et al. Nonnegative matrix and tensor factorizations: applications to exploratory multi AK RIDGE
data‘analysis and blind source separation. John Wiley & Sons, 2009. National Laboratory



Fibers and Slices
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Some tensor operations

Mode-n matricization: The mode-n matricization of A € RM1 X *MN denoted by A <"~
is a matrix obtained by linearizing all the indices of tensor A except n. Specifically, A~"~ is
a matrix of size M,, X (Hé\’:l’ﬁ#n M}), and the (mq, ..., my)th element of A 1s mapped to
the (m,,, J)th element of A~"~ where

N j—1
J=14+> (mj—DJjand J; = || M.
j=1 I=1,l#n

Khatri-Rao product: The Khatri-Rao product of two matrices A € R/1*L and B € R%2<L,
denoted by A © B € RV1/2)XL i5 defined as

aintby apby - aiLbp

a1by axnby --- axrby
AOB=

| ajiby ajoby - agLbr |
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NMF vs NTF

NMF NTF

weomR|A — WH||2 LA = [HOD, ., HO| 12
vi=1,..,n
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Distributed NCP Algorithm

* N-D Process Grid for N modes P; x - .- x Py

* Input Tensor is distributed as Ay.-py is (M1/FP1) x- - x (My/Py)
- Factors are all_gathered as HJ)) is (M;i/Pi) % k

that is redundant across (*, -+ %, pi, %, ..., %), for L <i < N
e U = Local- SYRK(H(i)) where Hg) of dimensions (M;/P) x k
+ G = All-Reduce(U, (x, . .., *))

. S = @G@
V = Local—MTTKRP(Apl...pN, {H(”)} i)
‘W = Reduce-Scatter(V, (x,...,%,pi,*,...,%))

- Compute HY from S and W using local NLS
%OAKRIDGE
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Conclusion and Future works

* Conclusion
— MPI-FAUN
— Distributed NTF

* Future work
— Benchmarking on very large datasets
— Optimal Communication
— Interpretation for scientific datasets
— Sparse Tensor with Hypergraph
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