

Matrix and Tensor Factorization with Scientific Constraints

Ramakrishnan(Ramki) Kannan

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Acknowledgements

This manuscript has been co-authored by UT-Battelle, LLC under Contract No. DE-AC05-000R22725 with the U.S. Department of Energy. This project was partially funded by the Laboratory Director's Research and Development fund. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan http://energy.gov/downloads/doepublic-access-plan. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the USDOE.

Scientific Engagement Model

3

NMF and Applications

file

directori

read

CAK RIDGE COMPUTING FACILITY REPART AND A CONTROL OF A CO

upload

number

byte

size

print

input

open

Motivation

- Understanding terrestrial information in an unknown place from satellite images
- Identifying presence of hidden unknown/foreign bodies in a scanned image - Eg., contamination in food articles, camouflaged explosives etc.
- Biological application spectral karyotyping, immunofluorescence, live-cell imaging, drug discovery, and tissue pathology – Eg., Unmixing on Spectral imaging of the stained tissues using multiple dyes.
- Physics and Material Sciences Mapping properties to endmembers. Comparing different materials

Input Image

MPI-FAUN

- Distributed Communication avoiding NMF Algorithms
- <u>https://github.com/ramkikannan/nmflibrary</u>
- http://dx.doi.org/10.1109/TKDE.2017.2767592

Rhea, 100 nodes, 1600 cores, Low Rank 50,

Dataset	Туре	Matrix size	NMF Time
Video	Dense	1 Million x 13,824	5.73 seconds
Stack Exchange	Sparse	627,047 x 12 Million	67 seconds
Webbase-2001	Sparse	118 Million x 118 Million	25 minutes

Titan – Dense Matrix, Low Rank 50, 100 Iterations, 12650 Nodes, 202500 Cores,

Matrix Size	Algos	NMF Time (in Secs)
3.03 million x 3.03 million	MU	554
	HALS	197.75
	ANLS/BPP	219.8

NMF on118 million Web-graph

Existing Approach : Linear Unmixing

- 1. Good at Capturing Macroscopic Information
- 2. Spatially segregated patterns

http://spectronet.de/story_docs/vortraege_2013/130306_ocm/130307_13_gro%C3%9F_fhg_iosb.pdf http://www.sfpt.fr/hyperspectral/wp-content/uploads/2013/01/cours_Licciardi.pdf

Existing Non-linear Unmixing (NLUM)

 $E_{S}=E_0e^{\sum_{k=1}^{N}-\alpha_k}$

 $E_0 e^{-\alpha_N}$

 $E_0 e^{-\alpha_1}$

Target pixel

Non-Meaningful results for following reasons:

- 1. End-members and abundance maps are negative
- 2. Too many end-members participate in a particular location
- 3. Similar end-members and not distinctive enough
- 4. Ratio of end-members are not correct
- 5. Rotated end-members

Solution:

NLUM w/ Physical Constraints such as non-negativity, sparsity, spatial smoothness, sum to 1, orthogonal etc.

http://spectronet.de/story_docs/vortraege_2013/130306_ocm/130307_13_gro%C3%9F_fhg_iosb.pdf http://www.sfpt.fr/hyperspectral/wp-content/uploads/2013/01/cours_Licciardi.pdf

CAK RIDGE National Laboratory

Higher Order Tensors

CAK RIDGE ACILITY

9

https://arxiv.org/abs/1609.00893v1

Dimensionality Reduction in Scientific Data

 Multimodal characterization of materials – comprehensive characterization from chemical composition to functional properties on the nanoscale

CAK RIDGE National Laboratory

10

Thanks Anton levlev

11