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Basic Terminologies - II
• Parallel Computing- Solving a task by simultaneous use of multiple 

processors in a unified architecture.
• High Performance Computing- Solving large problems via supercomputers 

+ fast networks + massive storage.
• Embarrassingly Parallel - Solving many similar, but independent, tasks. E.g., 

parameter sweeps.
• Multi-core/Many-core Processors - Almost all processors today. Multiple 

compute cores on a single chip. They share memory, operating system and 
network.

• Cluster Computing - Combination of commodity units (e.g. multi-core 
processors) to build parallel system.

• Pipelining (streaming) - Breaking a task into steps performed by different 
units, much like an assembly line.



Source: Marat Dukhan <mdukan3@gatech.edu>
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Some definitions

• For a given problem A, let
• SerTime(n) = Time of best serial program to solve A 

for input of size n.
• ParTime(n,p) = Time of the parallel 

program+architecture to solve A for input of size n, 
using p processors.

• Note that SerTime(n) ≤ ParTime(n,1).
• Speedup(n,p): SerTime(n) / ParTime(n,p)
• Work(n,p): p · ParTime(n,p) ← cost
• Efficiency(n,p): SerTime(n) / [p · ParTime(n,p)]

0 < Speedup ≤ p

Serial Work ≤ Parallel Work < ∞

0 < Efficiency ≤ 1
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Very rare. Some reasons for speedup > p 
(efficiency > 1)

• Parallel computer has p times as much 
RAM so higher fraction of program 
memory in RAM instead of disk. .An 
important reason for using parallel 
computers

• In developing parallel program a better 
approach was discovered, older serial 
program was not best possible.

• A useful side-effect of parallelization



Amdahl’s Law

• Amdahl [1967]: Let f be fraction of 
time spent on operations that are 
performed serially. Then for

• ParTime(p) ≥ SerTime(p) · 𝑓 + !"#
$

• Speedup(p) ! !

" # !"#
$

• Which implies
Speedup !1/f



Scaling
• Utilize large computers by increasing n as p increases
• Fix the amount of data per processor: weak scaling 

• Efficiency can remain high if communication does not 
increase excessively

• Warning: efficiency improves, but parallel time will 
increase if SerTime(n) superlinear (ω(n)).

• Amdahl considered strong scaling : n is fixed
• Linear speedup is difficult 

• Nothing scales to arbitrarily many processors.

• However, for most users, the important question is:
• Have I achieved acceptable performance on my 

software/hardware system for a suitable range of data and 
system sizes?

Weak Scaling

Strong Scaling



ARCHITECTURAL TAXONOMIES

• These classifications provide 
ways to think about problems 
and their solution.
• The classifications were originally 

in terms of hardware, but there 
are natural software analogues.
• Many systems blend approaches, 

and do not exactly correspond to 
the classifications.

SI : Single Instruction: All processors
execute the same instruction.

MI : Multiple Instruction: Different
processor may be executing
different instructions.

SD : Single Data: All processors are
operating on the same data.

MD: Multiple Data: Different processors
may be operating on different data.

Flynn’s Instruction/Data Taxonomy

Proposed by Michael Flynn (1966)
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SI Single Instruction: All processors execute the same
instruction.

MI Multiple Instruction: Different processors may be
executing different instructions.

SD Single Data: All processors are operating on the same
data.

MD Multiple Data: Different processors may be operating
on different data.

Stout and Jablonowski – p. 35/237



Shared Memory – A node or a computer
• Global memory space, accessible by all processors
• Processors may have local copies (in cache) of some 

global memory, consistency of copies usually 
maintained by hardware (cache coherency)

• Advantages:
• Global address space is user-friendly Data sharing between 

tasks is fast
• Disadvantages:

• Shared memory - to - CPU path may be a bottleneck (is 
bandwidth of the network sufficient?)

• Often: Non-Uniform Memory Access (NUMA)
• ⇒ access time varies, depends on physical distance

• Programmer responsible for correct synchronization
• Programming Models

• OpenMP, Cilk



Distributed Memory

• If processor A needs data in processor B, 
then B must send a message to A 
containing the data. Thus DM systems also 
known as message passing systems.

• Programming Models - MPI
• Advantages:

• Memory is scalable with number of processors
• Each processor has rapid access to its own 

memory
• Cost effective:can use commodity parts

• Disadvantages:
• Programmer is responsible for many of 

the details of the communication, easy 
to make mistakes.

• May be difficult to distribute the data 
structures



HPC Architectures with Accelerators

Shared Memory within a node with CPUs and GPUs
plus Distributed Memory concept: Non-local data can 
be sent across the network to other CPUs



Domain and Functional Decomposition

• Domain decomposition: Partition a (perhaps conceptual) space. 
Different processors do similar work on different pieces (quilting bee, 
teaching assistants for discussion sections, etc.)
• Functional decomposition: Different processors work on different 

types of tasks (workers on an assembly line, sub-contractors on a 
project, etc.)

• Functional decomposition rarely scales to many processors, so we’ll 
concentrate on domain decomposition.



Matrix Decompositions

• Suppose work at each position only depends on value there and 
nearby ones, equivalent work at each position.
• Dependencies force communication along boundary

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Minimize boundary (2D)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Minimize # neighbors (1D)

Minimizes 
Bandwidth

Minimizes 
Latency



Local vs Global Arrays

0 9 10 19 20 29

Serial Array

-1 0 9 10 0 9-1 10 0-1 9 10

Distributed Array

ghost
(if needed)

Processor 0 Processor 1 Processor 2



MPI Ranks -- Linear vs 2D Grid
MPI Rank vs. 2-D Indices

MPI ranks 0. . . 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

logical rows and

columns 0 . . . 3

For MPI_COMM_RANK = i and MPI_COMM_SIZE = p

my_row = !i/√p# and my_col = i−my_row ∗ √p

to send to logical send to MPI_COMM_RANK

Right (my_row, my_col +1) i + 1

Left (my_row, my_col -1) i − 1

Up (my_row -1, my_col) i − √p

Down (my_row +1, my_col) i +
√
p

MPI “virtual topologies” can do this for you.

Stout and Jablonowski – p. 95/237



OpenMP



Three building blocks

• Compiler Directives
• private(list), shared(list)
• firstprivate(list), lastprivate(list)
• reduction(operator:list)
• schedule(method[,chunk_size])
• nowait
• if(scalar_expression)
• num_thread(num)
• threadprivate(list), copyin(list)
• Ordered

• Runtime Libraries/APIs
• omp_set/get_num_threads, omp_get_thread_num, omp_{set,get}_dynamic, 

omp_in_parallel, omp_get_wtime
• Environment variables

• OMP_NUM_THREADS, OMP_SCHEDULE, OMP_STACKSIZE, OMP_DYNAMIC, OMP_NESTED, 
OMP_WAIT_POLICY



Fork-Join Model
• OpenMP programs begin as a single process: the master thread. 

• The master thread executes sequentially until the first parallel region construct is encountered.

• FORK: the master thread then creates a team of parallel threads.
• The statements in the program that are enclosed by the parallel region construct are then executed in 

parallel among the various team threads.
• JOIN: When the team threads complete the statements in the parallel region construct, they synchronize and 

terminate, leaving only the master thread.
• The number of parallel regions and the threads that comprise them are arbitrary.



Workshare vs Sections vs Single

DO / for shares iterations of 
a loop across the team. 
Represents a type of “data 
parallelism”.

SECTIONS breaks work into 
separate, discrete sections. Each 
section is executed by a thread. Can 
be used to implement a type of 
“functional parallelism”.

SINGLE serializes a 
section of code



Synchronization : Critical and Atomic

• Critical: Only one 
thread at a time can 
enter a critical region

• Atomic: Only one thread at 
a time can update a 
memory location

#include 
main()
{
int x;
x = 0;
#pragma omp parallel shared(x) 

{
#pragma omp critical 
x = x + 1;
}  /* end of parallel section */

}

#include 
main()
{
int x;
x = 0;
#pragma omp parallel shared(x) 

{
#pragma omp atomic
x = x + 1;
}  /* end of parallel section */

}



Reduction
• The reduction clause allows accumulative 

operations on the value of variables. 

• Syntax: reduction (operator:variable list) 

• A private copy of each variable which 
appears in reduction is created as if the 
private clause is specified. 

• Operators 
• Arithmetic 
• Bitwise
• Logical 

int main()
{

int i, n;
n = 10000;
float a[n], b[n];
double result, sequential_result;
/* Some initializations */
result = 0.0;
for (i = 0; i < n; i++)
{

a[i] = i * 1.0;
b[i] = i * 2.0;

}
#pragma omp parallel for default(shared) private(i) \

schedule(static) reduction(+ : result)
for (i = 0; i < n; i++)

result = result + (a[i] * b[i]);
printf("Final result= %f\n", result);
return 0;

}



MPI



Different MPI Functionalities

• Point-2-Point communications
• Collective Communications
• MPI-IO
• Tools Interface
• One sided message passing
• Derived Datatypes



Point to Point communication
• MPI provides four variants on send with blocking and nonblocking versions 

of each.
• Blocking means the call will not complete until the local data is safe to 

modify
• Nonblocking means the call returns “immediately”

• Nonblocking data movement calls in MPI are MPI_I{command}, e.g. MPI_Irecv() or 
MPI_Ialltoallv() (capital “Eye”)

• Nonblocking calls require a mechanism to tell when they are done – MPI_Wait*, 
MPI_Test*

• Data may or may not actually move before a call to MPI_Wait*/MPI_Test*
• It is not safe to reuse buffers until the Wait/Test says the operation is locally done.
• Nonblocking calls (can) allow for compute and communication to overlap



Collective Communication
• One process wants to communicate with multiple process

• One Process to all other process



MPI_All*



MPI Communicator Split // Get the rank and size in the original 
communicator
int world_rank, world_size;
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
MPI_Comm_size(MPI_COMM_WORLD, &world_size);

int color = world_rank / 4; // Determine color 
based on row

// Split the communicator based on the color and 
use the original rank for ordering
MPI_Comm row_comm;
MPI_Comm_split(MPI_COMM_WORLD, color, world_rank, 
&row_comm);

int row_rank, row_size;
MPI_Comm_rank(row_comm, &row_rank);
MPI_Comm_size(row_comm, &row_size);

printf("WORLD RANK/SIZE: %d/%d --- ROW RANK/SIZE: 
%d/%d\n",
world_rank, world_size, row_rank, row_size);

MPI_Comm_free(&row_comm);

MPI_Finalize();



Introduction to CUDA
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CPU vs GPU

https://www.intel.com/content/www/us/en/developer/articles/technical/comparing-cpus-gpus-and-fpgas-for-oneapi.html#gs.npufd2

CPU
• can execute instructions, divided into 

stages, at the rate of up to one 
instruction per clock cycle (IPC) when 
there are no dependencies.

• Scalar Piplined Execution
• designed to process serial instructions 

efficiently.
• find instruction-level parallelism and 

execute multiple out-of-order 
instructions per clock cycle. 

GPU
• SIMT == SIMD + Multithreading
• Is optimized for aggregate throughput 

across all cores, deemphasizing 
individual thread latency and 
performance.

• Efficiently processes vector data
• Dedicates more silicon space to compute 

and less to cache and control.



CPU Vs GPU Demo

https://www.youtube.com/watch?v=-P28LKWTzrI

CPU Advantages
• Out-of-order superscalar execution
• Sophisticated control to extract tremendous 

instruction level-parallelism
• Accurate branch prediction
• Automatic parallelism on sequential code
• Large number of supported instructions
• Lower latency when compared to offload 

acceleration
• Sequential code execution results in ease-of-

development

GPU Advantages:
• Massively parallel, up to thousands 

of small and efficient SIMD 
cores/EUs

• Efficient execution of data-parallel 
code

• High dynamic random-access 
memory (DRAM) bandwidth



CUDA Programming Model

Introduction to CUDA C/C++

CUDA Programming Model

• Heterogeneous Programming
– program separated into serial regions (run on CPU) & parallel regions (run on GPU)

• Heterogenous Programming
• program separated into serial regions (run on CPU) & parallel regions (run on GPU)

• Data Parallelism - Parallel regions consist of many calculations that can be executed independently  

Introduction to CUDA C/C++

CUDA Programming Model

• Parallel regions consist of many calculations that can be executed 
independently 
– Data Parallelism (e.g. vector addition)
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At its core are three key abstractions – a hierarchy
of thread groups, shared memories, and barrier
synchronization – that are simply exposed to the
programmer as a minimal set of language
extensions (to C programming language)



CUDA Program Outline

int main(){
// Allocate memory for array on host
// Allocate memory for array on device
// Fill array on host
// Copy data from host array to device array
// Do something on device (e.g. vector addition)
// Copy data from device array to host array
// Check data for correctness
// Free Host Memory
// Free Device Memory

}

CPU
RAM

GPU
GPU Mem



CUDA Kernel

• When kernel is launched, a grid of 
threads are generated
• SIMD Code – Same code is 

executed by all threads
• Serial – CPU

for (int i=0; i<N; i++) {
C[i] = A[i] + B[i];

}

• GPU – Parallel Code
• C[i] = A[i] + B[i];

Introduction to CUDA C/C++

CUDA Kernels

Ok, so what about the kernel?

• How is it different from a normal 
function?

Serial – CPU

for (int i=0; i<N; i++){

C[i] = A[i] + B[i];

}

Parallel – GPU

C[i] = A[i] + B[i];

– When kernel is launched, a grid of threads 
are generated

– Same code is executed by all threads

• Single-Program Multiple-Data (SPMD)



1D Indexing in CUDA programming

Introduction to CUDA C/C++

CUDA Kernels

Ok, so what about the kernel?  What does it look like?

__global__ void vector_addition(int *a, int *b, int *c)

{

int i = blockDim.x * blockIdx.x + threadIdx.x;

if (i<N) c[i] = a[i] + b[i];

}

threadIdx

Specifies a local thread id within a thread block
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(4) (0-3) (0-3)__global__ void vector_addition(int *a, int *b, int *c)
{

(4)       (0-3)    (0-3)
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i<N) c[i] = a[i] + b[i];

}

Introduction to CUDA C/C++

int i = 4 * 2 + 1 = 9

0 1 2 3 0 1 2 3 0 1 2 3

CUDA Kernels

Ok, so what about the kernel?  What does it look like?

__global__ void vector_addition(int *a, int *b, int *c)

{

int i = blockDim.x * blockIdx.x + threadIdx.x;

if (i<N) c[i] = a[i] + b[i];

}

0 1 2 3

block 0 block 1 block 2 block 3

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

(4) (2) (1)

thr_per_blk = 4;
blk_in_grid = ceil( float(N) / thr_per_blk );
vec_add<<< blk_in_grid, thr_per_blk >>>(d_a, d_b, d_c);



CUDA Threads to 2D Array

Introduction to CUDA C/C++

A0,0 A0,1 A0,2 A0,3 A0,4 A0,5 A0,6 A0,7 A0,8 A0,9

A1,0 A1,1 A1,2 A1,3 A1,4 A1,5 A1,6 A1,7 A1,8 A1,9

A2,0 A2,1 A2,2 A2,3 A2,4 A2,5 A2,6 A2,7 A2,8 A2,9

A3,0 A3,1 A3,2 A3,3 A3,4 A3,5 A3,6 A3,7 A3,8 A3,9

A4,0 A4,1 A4,2 A4,3 A4,4 A4,5 A4,6 A4,7 A4,8 A4,9

A5,0 A5,1 A5,2 A5,3 A5,4 A5,5 A5,6 A5,7 A5,8 A5,9

A6,0 A6,1 A6,2 A6,3 A6,4 A6,5 A6,6 A6,7 A6,8 A6,9

Map CUDA threads to 2D array

dim3 threads_per_block( 4, 4, 1 );

dim3 blocks_in_grid( ceil( float(N) / threads_per_block.x ),

ceil( float(M) / threads_per_block.y ) , 1 );

mat_add<<< blocks_in_grid, threads_per_block >>>(d_a, d_b, d_c);

Assume a 4x4 
blocks of threads…

Then to cover all 
elements in the 
array, we need 3 
blocks in x-dim and 
2 blocks in y-dim.

M = 7 rows
N = 10 columns

Let M = 7 rows, N = 
10 columns and a 
4x4 blocks of 
threads... 
To cover all 
elements in the 
array, we need 3 
blocks in x-dim and 
2 blocks in y-dim. 

__global__ void add_matrices(int *a, int *b, int *c)
{

int column = blockDim.x * blockIdx.x + threadIdx.x; // [0-11]
int row = blockDim.y * blockIdx.y + threadIdx.y; //[0-7]
if (row < M && column < N) //There is no row 7 and col 11. 
{

int thread_id = row * N + column; //[0-69]
c[thread_id] = a[thread_id] + b[thread_id];

}
}

Row = 4
Column = 5
Thread_id = 4 * 10 + 5 = 45

Introduction to CUDA C/C++

Row-Major Order

A0,0 A0,1 A0,2 A0,3 A0,4

A1,0 A1,1 A1,2 A1,3 A1,4

A2,0 A2,1 A2,2 A2,3 A2,4

A3,0 A3,1 A3,2 A3,3 A3,4

A0,0 A0,1 A0,2 A0,3 A0,4 A1,0 A1,1 A1,2 A1,3 A1,4 A2,0 A2,1 A2,2 A2,3 A2,4 A3,0 A3,1 A3,2 A3,3 A3,4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

… …

dim3 threads_per_block( 4, 4, 1 ); 
dim3 blocks_in_grid( ceil( float(N) 
/ threads_per_block.x ), ceil( 
float(M) / threads_per_block.y ) , 
1 ); 
mat_add<<< blocks_in_grid, 
threads_per_block >>>(d_a, d_b, 
d_c); 



Parallel IO



Lustre

• Distributed file system

• Hierarchical management

• Concurrency from multiple 
OSTs

• Meta data management 
with multiple MDTs



Lustre Components

• Lustre consists of four major 
components
– MetaData Server (MDS)
– Object Storage Servers (OSSs)
– Object Storage Targets (OSTs)
– Clients

• MDS: track meta data (eg., 
name, location)

• OST: back-end storage for file 
object data

• Performance: Striping, 
alignment, placement

(ADIOS tutorial, ORNL)



HPC I/O Patterns

0 1 2 3 0 1 2 3 0 1 2 3

File File File FileFile File

Non-parallel I/O Parallel Multi-file I/O Parallel Single-file I/O 

• Serial performance
• Scaling issue
• Memory limit

• Metadata issue
• Management issue

• User-friendly
• Sync/lock overhead



What is MPI I/O?

• I/O interface specification for 
parallel MPI applications

• Parallel I/O part for MPI

• MPI IO provides
– Parallel I/O operations
– Enable to use efficiently parallel file 

systems
– Independent/collective I/Os

• Low-level interface

• At the application level, users 
may want to use of a more 
abstract library

Open

Read/Write

Close

Open

Read/Write

Close

Read/Write Read/Write

POSIX I/O

MPI I/O

fd = open("foo.txt", O_WRONLY 
| O_CREAT, 0644);
write(fd, buf, len);
close(fd)

MPI_File_open

MPI_File_close



Application

Self Describing 
Parallel I/O

Lower Level I/O

Parallel File System

SSD/NVRAM

ADIOS , HDF5, pnetcdf
maps variables to data output in a file 
and/or stream
MPI-IO, POSIX
Places the data to the storage 
system, often optimizing the data 
from the I/O path to the storage 
system
Burst Buffer optimizations

GPFS, Lustre, …
maintains logical space and  provides 
efficient access to data

TAPE, HPSS, …

I/O and Storage Stack
• We encourage the use of self-

describing, binary, portable I/O 
formats
• We encourage users to push 

the envelope of the I/O 
Middleware (ADIOS, HDF5, etc.)
• Abstractions should not “force” 

implementations
• Use data in streams or files
• Write data according to the 

matching of the I/O(??) from the 
application(s) and the storage 
layers

Cold Storage

DRAM, local, remote

(ADIOS tutorial, ORNL)



Performance Modeling



Roofline Model
Goals Of Roofline Model 
• A graphical aid that provides : realistic 

expectations of performance and productivity

• Show inherent hardware limitations for a 

given kernel

• Show potential benefit and priority of 

optimizations

• Focused on: rates and efficiencies (GF/s, % 

of peak)
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• Computation: measured in GF/sec, GTEPS 

• Communication: GB/sec 

• Locality: Cache Size, Data Reuse 

Source: Sam Williams (LBNL)





❖True Arithmetic Intensity (AI) ~ Total Flops / Total DRAM Bytes 
▪constant with respect to problem size for many problems of interest 

▪ultimately limited by compulsory traffic

▪diminished by conflict or capacity misses.

A r i t h m e t i c  I n t e n s i t y

O( N )O( log(N) )O( 1 )

SpMV, BLAS1,2

Stencils (PDEs)

Lattice 
Methods

FFTs
Dense Linear Algebra 
(BLAS3)/ Deep 
Learning Particle 

Methods



for (int i=0; i<n; i++) {
A[i] = B[i] + C[i]

}

next coe
for (int i=0; i<n; i++) {

for (int j=0; j<n; j++) {
C[i] += A[i][j]*B[j]
}

}

for (int k=0; k<n; k++) {
for (int i=0; i<n; i++) {

for (int j=0; j<n; j++) {
C[i][j] += A[i][k]*B[k][j]
}

}
}
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for (int i=0; i<n; i++) {
A[i] = B[i] + C[i]

}

next coe
for (int i=0; i<n; i++) {

for (int j=0; j<n; j++) {
C[i] += A[i][j]*B[j]
}

}

for (int k=0; k<n; k++) {
for (int i=0; i<n; i++) {

for (int j=0; j<n; j++) {
C[i][j] += A[i][k]*B[k][j]
}

}
}

1

for (int i=0; i<n; i++) {
A[i] = B[i] + C[i]

}

next coe
for (int i=0; i<n; i++) {

for (int j=0; j<n; j++) {
C[i] += A[i][j]*B[j]
}

}

for (int k=0; k<n; k++) {
for (int i=0; i<n; i++) {

for (int j=0; j<n; j++) {
C[i][j] += A[i][k]*B[k][j]
}

}
}
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Distributed Complexity Analysis



A simple model for point-to-point messages
The time to send or receive a message of s words is ↵+ s · �
I ↵ – latency/synchronization cost per message
I � – bandwidth cost per word
I each processor can send and/or receive one message at a time

Consider the cost of a broadcast of s words

I using a binary tree of height
hr = 2(log2(p+ 1)� 1) ⇡ 2 log2(p)

T = hr · (↵+ s · �)

I using a binomial tree of height
hm = log2(p+ 1) ⇡ log2(p)

T = hm · (↵+ s · �)



Collective communication in BSP
I When h = p, most collective communication routines involving s words of

data per processor can be done with BSP cost O(↵+ s · �)
I Scatter: root sends each s/p-sized message to its target (root incurs s · � send

bandwidth)
I Reduce-Scatter: each processor sends s/p summands to every other processor

(every processor incurs s · � send and receive bandwidth)
I Gather: send each message of size s/p to root (root incurs s · � receive

bandwidth)
I Allgather: each processor sends s/p words portion to every other processor

(every processor incurs s · � send and receive bandwidth)
I Broadcast done by Scatter then Allgather
I Reduce done by Reduce-Scatter then Gather
I Allreduce done by Reduce-Scatter then Allgather
I All-to-all can be done by sending messages directly in one round
I For h < p, O(log

h
p) supersteps required, but bandwidth cost same for all except

all-to-all (higher by O(log
h
p) via h-ary butterfly protocols



Profiling and Matrix Multiplication
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Ramping up the Flops – matrix multiplication

• Matrix addition: C = AxB
• If A is n x k and B is k x m, then:
• C is n x m, each position in C requires the sum of k multiplications 

(the dot product of each column of B, row of A)
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Ramping up the Flops – matrix multiplication

N (N x N 
matrix)

AI 
(Flops/Byte)

Performance 
(GFLOPs)

Theoretical 
Peak
(GFLOPs)

1024 42.00 8822.32 23900

2048 47.44 11017.20 23900

4096 35.77 12337.90 23900

• This looks much better
• >10x floating-point performance
• >50% device peak at largest size



Parallel Frameworks -- Kokkos
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The Kokkos EcoSystem





GATech Spring 2023 23/67

Scalar integration (4)

Example: Scalar integration

double totalIntegral = 0;
#pragma omp parallel for reduction(+: totalIntegral)
for (int64_t i = 0; i < numberOfIntervals; ++i) {

totalIntegral += function (...);
}

double totalIntegral = 0;
parallel_reduce(numberOfIntervals ,

[=] (const int64_t i, double & valueToUpdate) {
valueToUpdate += function (...);

},
totalIntegral );

I The operator takes two arguments: a work index and a value
to update.

I The second argument is a thread-private value that is
managed by Kokkos; it is not the final reduced value.
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Execution spaces (1)

Execution Space
a homogeneous set of cores and an execution mechanism

(i.e., “place to run code”)

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator

Execution spaces: Serial, Threads, OpenMP, Cuda, HIP, ...
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Memory spaces (0)

Memory space:
explicitly-manageable memory resource

(i.e., “place to put data”)

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator


