

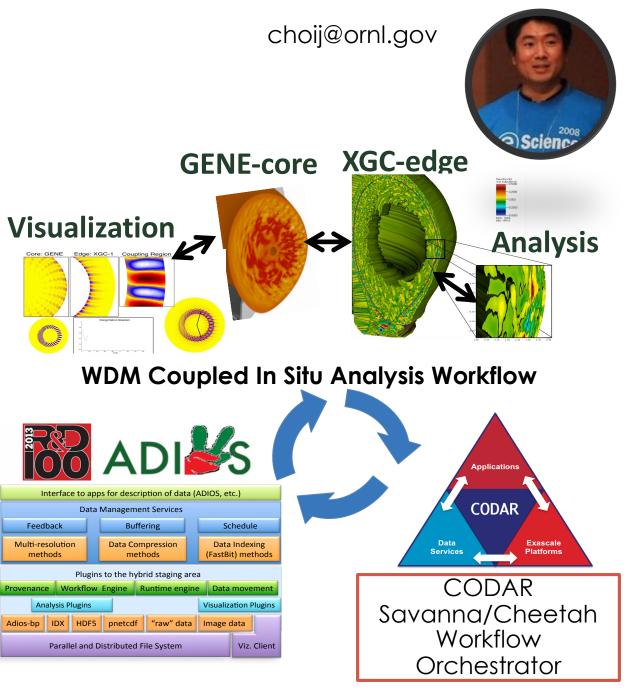
Parallel I/O

6230 – Spring (1/31/2023)

Jong Choi Discrete Algorithm Group Mathematics in Computation Section Oak Ridge National Laboratory (ORNL)

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Special Thanks


- Ramakrishnan Kannan, ORNL
- Scott Klasky, Norbert Podhorszki, ADIOS Team, ORNL
- CS Chang, Princeton Plasma Physics Laboratory (PPPL)

About me

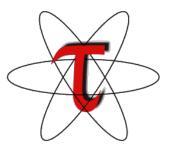
Develop tools for **composability** of **complex, coupled workflows** consisting of independently running **simulation** and **analysis** applications

- Challenges
 - Big data and performance challenge
 - Supporting In situ/online analysis
 - Managing complex workflow
- Impact
 - Big data analysis
 - Whole device modeling with coupled workflow
 - CODAR co-design study

CAK RIDGE

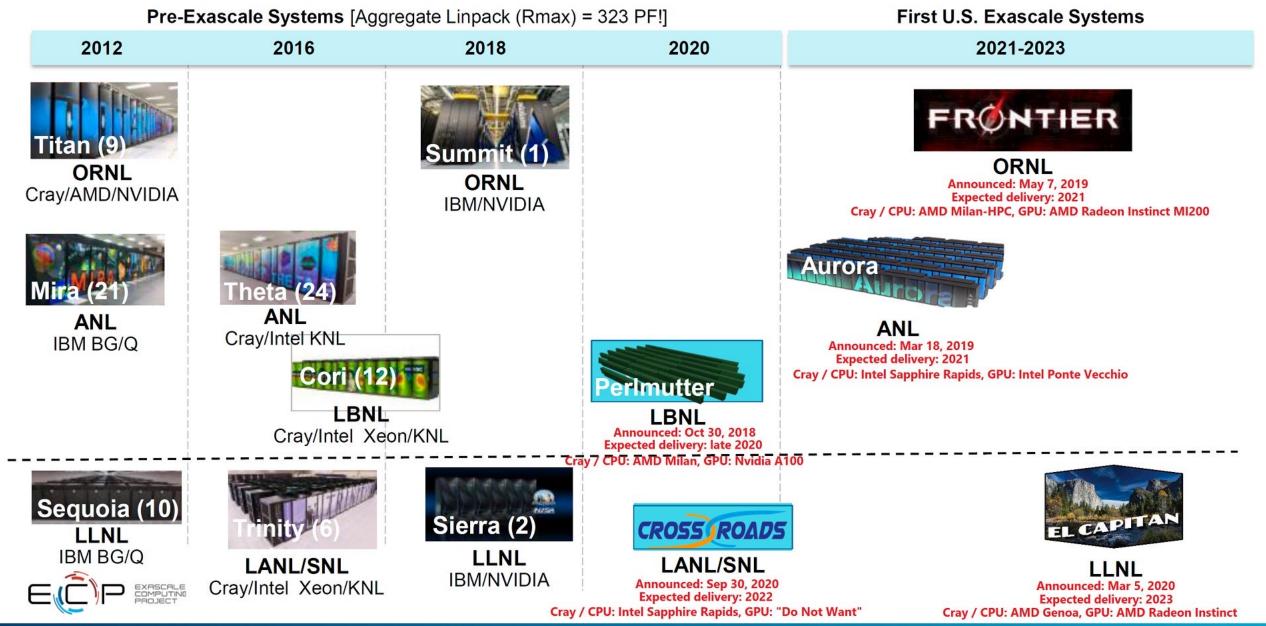
Outline

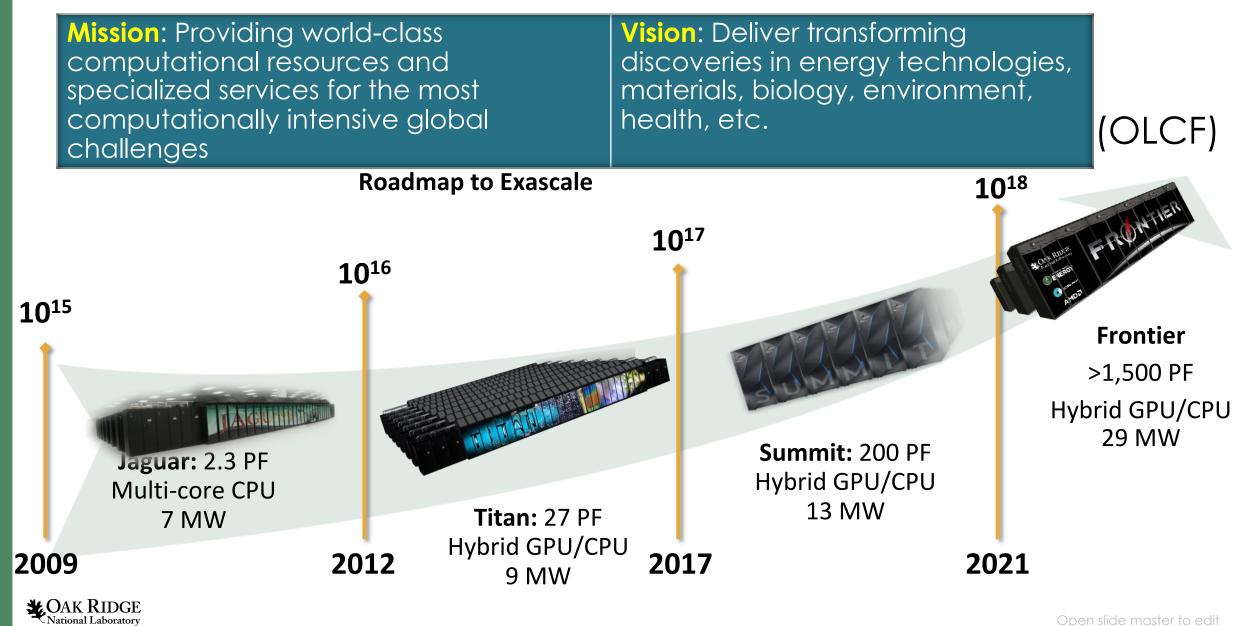
- Introduction
- Parallel filesystem
 - Lustre
 - GPFS
- Parallel I/O
- High-level I/O libraries
 - Adios
 - HDF5
- I/O Performance measurement tools
- Hands-on demonstration



Model GL4S: 4 Enclosures, 20U 334 NL-SAS, 2 SSD

TAU Performance System®


Introduction


Department of Energy (DOE) Roadmap to Exascale Systems

An impressive, productive lineup of accelerated node systems supporting DOE's mission

(Exa-scale: 10¹⁸)

Oak Ridge Leadership Computing Facility

November 2022

The 60th TOP500 List was published Nov. 15, 2022 in Dallas, TX.

https://www.top500.org/lists/top500/

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE DOE/SC/Oak Ridge National Laboratory United States	8,730,112	1,102.00	1,685.65	21,100
2	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
3	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,220,288	309.10	428.70	6,016
4	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband, Atos EuroHPC/CINECA Italy	1,463,616	174.70	255.75	5,610
5	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148.60	200.79	10,096

Comparison of Titan, Summit, and Frontier Systems

Specs	Titan	Summit	Frontier
Peak	27 PF	200 PF	>1.5 EF
# cabinets	200	256	> 100
Node	1 AMD Opteron 1 NVIDIA K20X Kepler GPU	2 IBM POWER9™ CPUs 6 NVIDIA Volta GPUs	1 HPC and AI Optimized AMD EPYC 4 AMD Radeon Instinct GPU
On-node interconnect	PCI Gen2 No coherence across the node	NVIDIA NVLINK Coherent memory across a node	AMD Infinity Fabric Coherent memory across the node
System Interconnect	Cray Gemini network 6.4 GB/s	Mellanox Dual-port EDR IB network 25 GB/s	Cray four-port Slingshot network 100 GB/s
Topology	3D Torus	Non-blocking Fat Tree	Dragonfly
Storage	32 PB, 1 TB/s, Lustre Filesystem	250 PB, 2.5 TB/s, IBM Spectrum Scale™ with GPFS™	2-4x performance and capacity of Summit's I/O subsystem.
	No	Yes	Yes

Different resources, different storage and Burst Buffer

	Summit ORNL	Theta ANL	Cori NERSC	Tsubame3 Tokyo Tech
CPU	IBM Power9	Intel KNL	Intel KNL and Haswell	2x Intel Xeon (2.4 GHz, 14 core)
Memory	512 GB DDR4 + 16 GB HBM2	192 GB DDR4 + 16 GB MCDRAM	KNL: 96 GB DDR4 + 16 GB MCDRAM Haswell: 128 GB DDR4	256 GB
GPU	6x NVIDIA Tesla V100 (Volta)	N/A	N/A	4x NVIDIA Tesla P100 (Pascal)
Interconnect	Fat-tree	Aries Dragonfly	Aries Dragonfly	Fat-tree
File System	GPFS	Lustre	Lustre/GPFS	Lustre
Burst buffer/SSD	Local NVMe	Local SSD	Shared SSDs	SSDs with BeeGFS share file system

Frontier Overview

Partnership between ORNL, Cray, and AMD Peak Performance greater than 1.5 EF

Composed of more than 100 Cray Shasta cabinets

Connected by **Slingshot™ interconnect** with adaptive routing, congestion control, and quality of service

Node Architecture:

An AMD EPYC[™] processor and four Radeon Instinct[™] GPU accelerators built for exascale computing

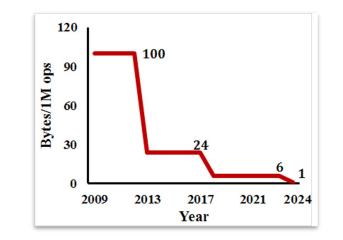
Fully connected with high speed AMD Infinity Fabric links

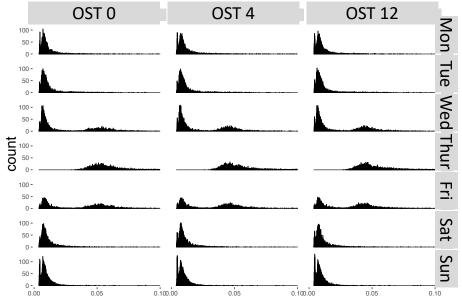
Coherent memory across the node

100 GB/s injection bandwidth

Near-node NVM storage

Researchers will harness Frontier to advance science in such applications as systems biology, materials science, energy production, additive manufacturing and health data science.




I/O on leadership HPC machines is challenging

- I/O & Storage Bandwidth are not keeping up with FLOPS and Memory
- The Storage hierarchy is getting more complex
 - The usage of non-volatile memory will further deepen the storage hierarchy
- The scale of storage and I/O subsystems has increased significantly
- The increase of system scale and complexity along with decrease in overall Storage BW/FLOP exacerbates the variability of I/O performance ir HPC environments

B. Xie, J. Chase, D. Dillow, O. Drokin, S. Klasky, S. Oral, and N. Podhorszki. Characterizing output bottlenecks in a supercomputer. In High Performance Computing, Networking, Storage and Analysis (SC), 2012.

L. Wan, M. Wolf, F. Wang, J. Y. Choi, G. Ostrouchov, S. Klasky, Analysis and Modeling of the Endto-End I/O Performance on OLCF's Titan Supercomputer in High Performance Computing and Communications; IEEE 15th International Conference on Smart City; IEEE 3rd International Conference on Data Science and Systems (HPCC/SmartCity/DSS), 2017 IEEE 19th International Conference, IEEE, pp. 1–9, best paper nominee.

Histograms of latencies of 1MB writes to different OSTs on different days

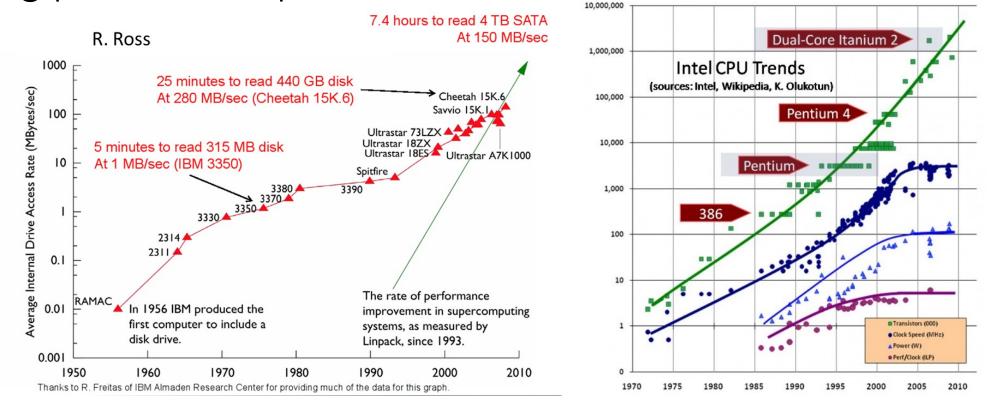
The Data Problem

- **Push** from Storage and Network technology, not keeping pace with the growing data demand
 - Current Storage technologies for HPC
 - New storage technologies are giving new opportunities for Storage and I/O
 - Growth of new storage tiers
 - New types of User-Defined Storage for new user-defined tiers
 - Common Parallel File Systems
 - Lustre
 - GPFS

CAK RIDGE

• Burst Buffer File Systems

• Pull from Applications


- HPC Simulations traditional
- HPC Simulations new I/O patterns
- Experiments streaming data
- Observations

• The need for self-describing data

- On line processing
- Off line processing
- Data Life-cycle

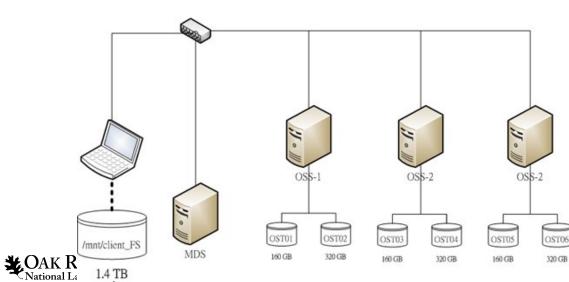
Disk Transfer Rates over time compared to processor speeds

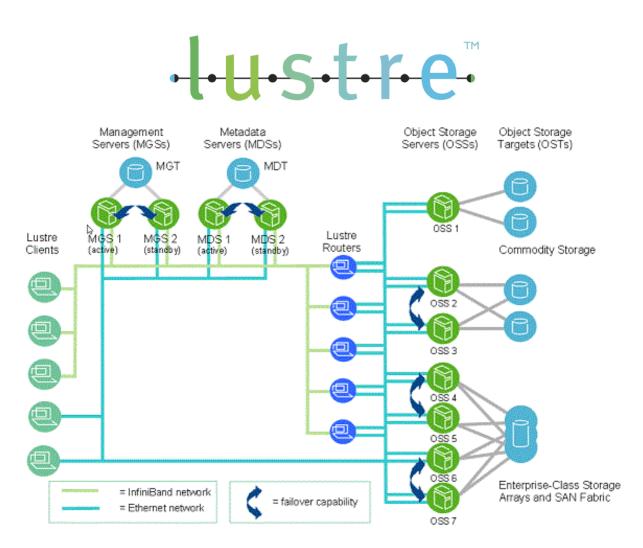
- Both processor speed and disk speeds have mostly been increasing due to **concurrency**
- Accelerators (NVRAM) have been used to speed up the processing power/disk speeds

Parallel filesystem

We need a Parallel File System

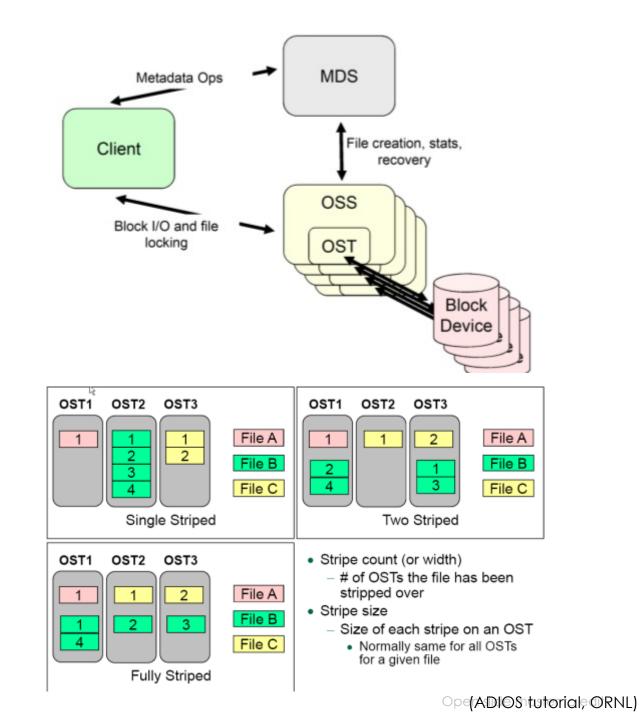
- High Performance Computing & Big Data requirements have outgrown the capabilities of any single host
 - (data set sizes) > (drive capacities)
 - Single server bandwidth is not sufficient to support access to all data from thousands of clients
- Need a parallel file system that can:
 - Scale capacity/bandwidth
 - Support large numbers of clients
- Lustre and GPFS are popular choices to meet these needs




List of File Systems

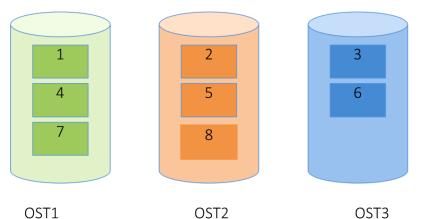
File system 🗢	Creator 🗢	Year of introduction	Original operating system	GPFS	IBM	1996	
DECtape	DEC	1964	PDP-6 Monitor	Be File System	Be Inc. (D. Giampaolo, Cyril Meurillon) 199	1996	
OS/3x0 FS	IBM	1964	OS/360				A section time
Level-D	DEC	1968	TOPS-10	Minix V2 FS	Andrew S. Tanenbaum	1997	Application
George 3	ICT (later ICL)	1968	George 3	HFS Plus	Apple	1998	
Version 6 Unix file system (V6FS)	Bell Labs	1972	Version 6 Unix	NSS	Novell	1998	NetWare 5
RT-11 file system	DEC	1973	RT-11	PolyServe File System			in the second
Disk Operating System (GEC DOS)	GEC	1973	Core Operating System	(PSFS)	PolyServe	1998	Operating system
CP/M file system	Digital Research (Gary Kildall)	1974	CP/M ^{[1][2]}	ODS-5	DEC	1998	Openvms v
ODS-1	DEC	1975	RSX-11	WAFL	NetApp	1998	Data ONTA
GEC DOS filing system extended	GEC	1977	OS4000	ext3	Stephen Tweedie	1999	Hardware
FAT (8-bit)	Microsoft (Marc McDonald) for NCR	1977	Microsoft Standalone Disk BASIC-80 (later Micro Standalone Disk BASIC-86)	ISO 9660:1999	Ecma International, ISO	1999	Microsof
DOS 3.x	Apple	1978	Apple DOS				
UCSD p-System	UCSD	1978	UCSD p-System	JFS	IBM	1999	OS/2 Warp Server for e-business
CBM DOS	Commodore	1978	Commodore BASIC	GFS	Sistina (Red Hat)	2000	Linux
Atari DOS	Atari	1979	Atari 8-bit	ReiserFS	Namesys	2001	Linux
Version 7 Unix file system (V7FS)	Bell Labs	1979	Version 7 Unix	zFS	IBM	2001	z/OS (backported to OS/390)
ODS-2	DEC	1979	OpenVMS	FATX	Microsoft	2002	Xbox
FAT12	Seattle Computer Products (Tim Paterson)	1980	QDOS/86-DOS (later IBM PC DOS 1.0)	UFS2	Kirk McKusick	2002	FreeBSD 5.0
ProDOS	Apple	1980	Apple SOS (later ProDOS 8)	OCFS	Oracle Corporation	2002	Linux
DFS	Acorn Computers Ltd	1982	Acorn BBC Micro MOS	SquashFS	Phillip Lougher, Robert Lougher	2002	Linux
ADFS	Acorn Computers Ltd	1983	Acorn Electron (later Arthur/RISC OS)		1 10 11 10 10		
FFS	Kirk McKusick	1983	4.2BSD	VMFS2	VMware	2002	VMware ESX Server 2.0
FAT16	IBM, Microsoft	1984	PC DOS 3.0, MS-DOS 3.0	Lustre	Cluster File Systems ^[5]	2002	Linux
MFS	Apple	1984	System 1	Fossil	Bell Labs	2003	Plan 9 version 4
Elektronika BK tape format	NPO "Scientific centre" (now Sitronics)	1985	Vilnius Basic, BK monitor program	Google File System	Google	2003	Linux
HFS	Apple	1985	System 2.1	ZFS	Sun Microsystems	2004	Solaris
Amiga OFS ^[1]	Metacomco for Commodore	1985	Amiga OS	Reiser4	Namesys	2004	Linux
GEMDOS	Digital Research	1985	Atari TOS				
IWFS	Novell	1985	NetWare 286	Non-Volatile File System	Palm, Inc.	2004	Palm OS Garnet
ligh Sierra	Ecma International	1986	MSCDEX for MS-DOS 3.1/3.2 ^[3]	BeeGFS	Fraunhofer/ ThinkParQ 🖉	2005	Linux
FAT16B	Compag	1987	Compag MS-DOS 3.31	GlusterES	Gluster Inc	2005	Linux

Lustre

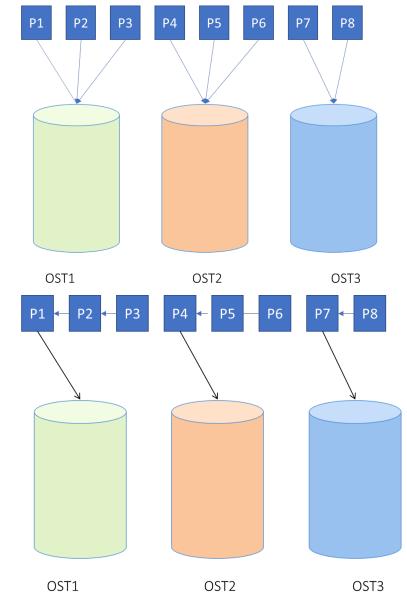

- Distributed file system
- Hierarchical management
- Concurrency from multiple
 OSTs
- Meta data management with multiple MDTs

Lustre Components

- Lustre consists of four major components
 - MetaData Server (MDS)
 - Object Storage Servers (OSSs)
 - Object Storage Targets (OSTs)
 - Clients
- MDS: track meta data (eg., name, location)
- OST: back-end storage for file
 object data
- Performance: Striping, alignment, placement

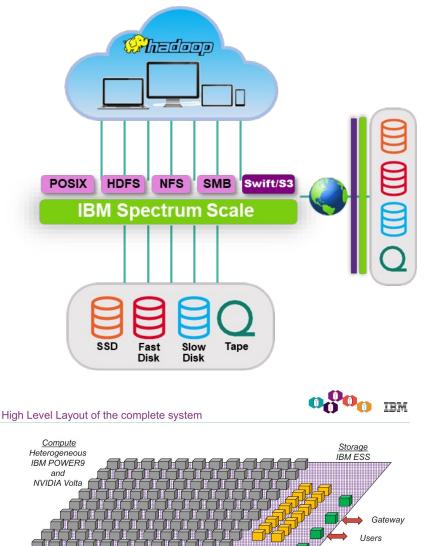


Multiple methods to obtain high performance for Lustre


- Stripe across the disks using one write statement, using ioctls for the stripe_count and stripe_size
- Write multiple files
- Aggregate data to the "best" number

1 2 3 4 5 6 7 8

File (size = 8MB), stripe_count = 3, stripe_size = 1 MB


Optimize concurrency by writing to more OSTS: avoid locking when possible

ope(ADIOS tutorial ORNL)

General Parallel File System – IBM Spectrum Scale

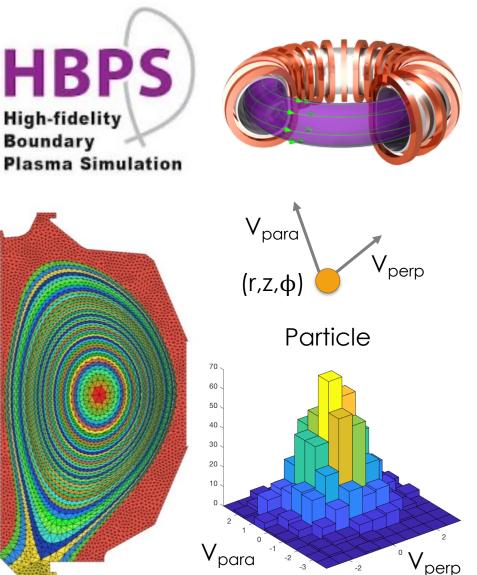
- 1993: Started as "Tiger Shark" research project at IBM Research Almaden as high-performance filesystem for accessing and processing multimedia data
- Next 20 years: Grew up as General Parallel File System (GPFS) to power the world's largest supercomputers
- Since 2014: Transforming to IBM Spectrum Scale to support new workloads which need to process huge amounts of unstructured data
- Automatic de-staging of cold data to on premise or off premise object storage
- Exchange of data between Spectrum Scale clusters via object storage in the cloud

IBM Systems Technical Events Libm.com/training/e

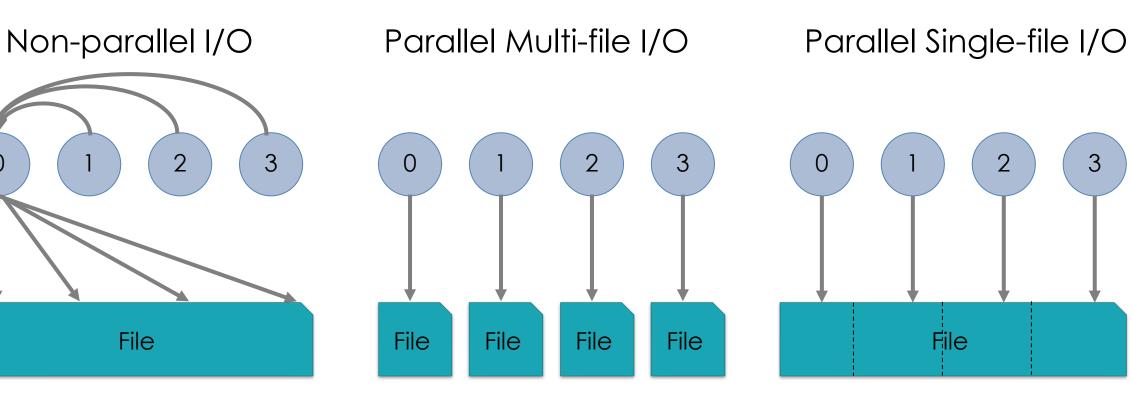
Management & Infrastructure Suppor

 Copyright IBM Corporation 2017 Technical University/Symposia materials may not be refract the comparison of the comp

Difference between GPFS and Lustre → Lustre allows users to set stripe size, stripe count, and even determine which OSTs (GPFS does NOT allow this)


Parallel I/O

Open slide master to edit


Parallel Application Example: XGC Fusion Simulation

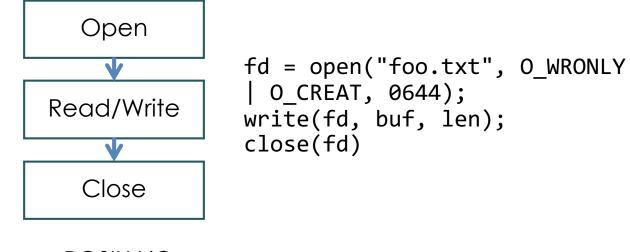
- Gyrokinetic particle-in-cell (PIC) code
- Mesh data
 - High-resolution unstructured mesh
- Particles data
 - 5D particle information
 - Aggregated particle information
 - Representing particle distribution per mesh node
 - Histogram over 2D velocity space (a vertical and perpendicular space)
- Challenge
 - Large scale (e.g., 4096x6 processes on Summit)
 - Large volume of data (e.g., ~GBs per step)
 - Long runs for production scale

HPC I/O Patterns

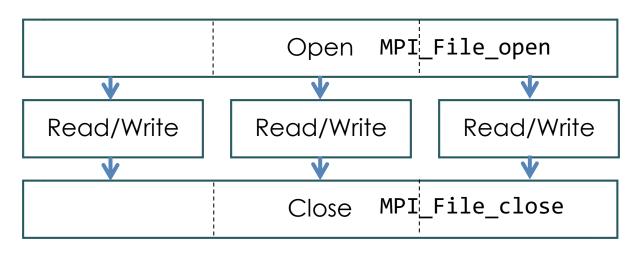
- Serial performance •
- Scaling issue
- Memory limit

- Metadata issue •
- Management issue •

- User-friendly ٠
- Sync/lock overhead •


0

What is MPI I/O?


- I/O interface specification for parallel MPI applications
- Parallel I/O part for MPI
- MPI IO provides
 - Parallel I/O operations
 - Enable to use efficiently parallel file systems
 - Independent/collective I/Os
- Low-level interface

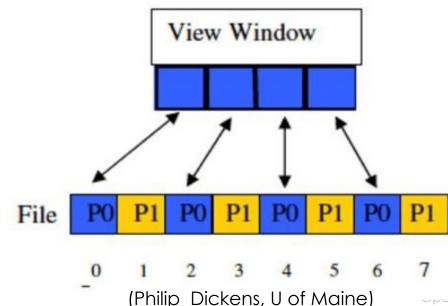
25

 At the application level, users may want to use of a more abstract library

POSIX I/O

MPI I/O

Main features


- Independent/Collective I/Os
- File View

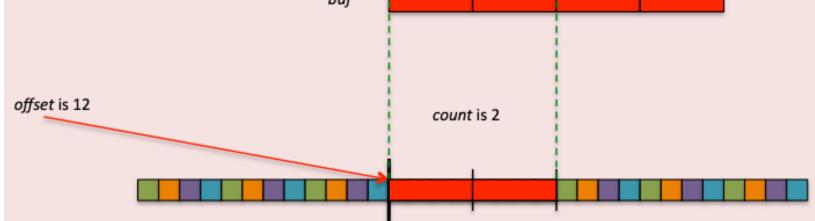
26

National Laboratory

- MPI_File_read_shared
- MPI_File_write_shared
- MPI_File_read_all
- MPI_File_write_all
- MPI_File_read_at_all
- MPI_File_write_at_all _

MPI File set view

Independent Write


```
// Open a file and shared by all
  MPI_File_open(MPI_COMM_WORLD, "out.bin", MPI_MODE_CREATE | MPI_MODE_RDWR, MPI_INFO_NULL, &fh);
  for (i = 0; i < LEN; i++)
      buf[i] = rank;
  // Independent
  for (k = 0; k < nprocs; k++)
   {
       if (rank == k)
           printf ("rank %d writes\n", rank);
          MPI_File_write_at(fh, rank, buf, 1, MPI_INT, &status);
       MPI File sync(fh);
      MPI Barrier(MPI_COMM_WORLD);
  // Close the file
  MPI File sync(fh);
  MPI File close(&fh);
```


Collective Write

```
// Open a file and shared by all
MPI_File_open(MPI_COMM_WORLD, "out.bin", MPI_MODE_CREATE | MPI_MODE_RDWR, MPI_INFO_NULL, &fh);
for (i = 0; i < LEN; i++)
buf[i] = rank + 1;
// Set view
offset = (MPI_Offset)rank * 2 * sizeof(int);
MPI_File_set_view(fh, offset, MPI_INT, MPI_INT, "native", MPI_INFO_NULL);
MPI_File_write_all(fh, buf, 2, MPI_INT, &status);
// Close the file
MPI_File_close(&fh);
buf
```

```
MPI_Finalize();
return 0;
```


(MPI-IO tutorial, CSCS) Open slide master to edit

High-level I/O libraries

I/O and Storage Stack

- We encourage the use of self-describing, binary, portable I/O formats
- We encourage users to push the envelope of the I/O Middleware (ADIOS, HDF5, etc.)
- Abstractions should not "force" implementations
 - Use data in streams or files
 - Write data according to the matching of the I/O(??) from the application(s) and the storage layers

Application

DRAM, local, remote

Pa

Self Describing Parallel I/O	ADIOS , HDF5, pnetcdf maps variables to data output in a file and/or stream
	MPI-IO, POSIX
Lower Level I/O	Places the data to the storage system, often optimizing the data from the I/O path to the storage
	system
SSD/NVRAM	Burst Buffer optimizations
	GPFS, Lustre,
arallel File System	maintains logical space and provides efficient access to data
Cold Storage	TAPE, HPSS,
	On detailed and the second of



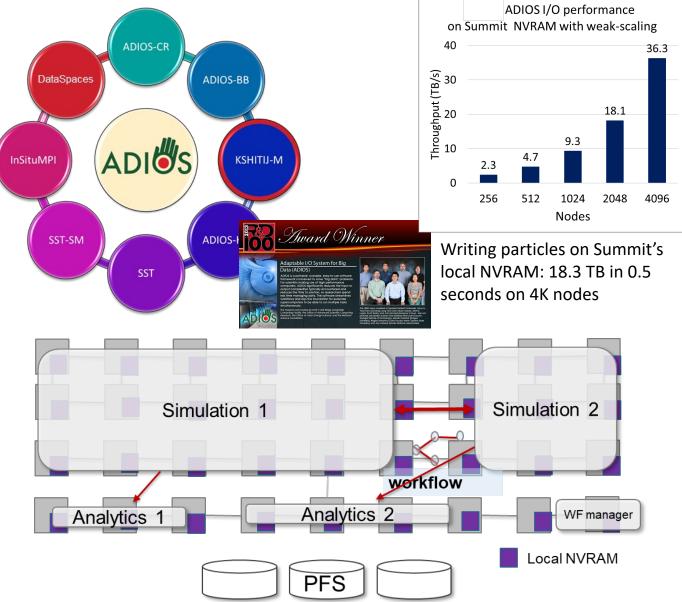
HDF5 and ADIOS common features

- Container structure to manage data collection
- Various data object
- Meta data

CAK RIDGE National Laboratory

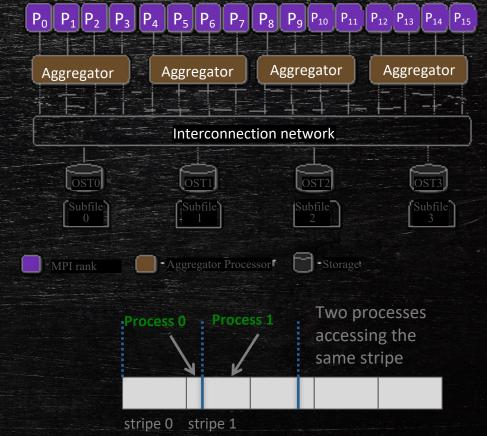
- Portable file format
- Multi-platform and binding
- Data compression
- Tools and services

ADIOS: High-Performance Publisher/Subscriber I/O framework


Vision

Create a high performance I/O abstraction to allow for on-line/off-line memory/file data subscription service Create a sustainable solution to work with multi-tier storage and memory systems

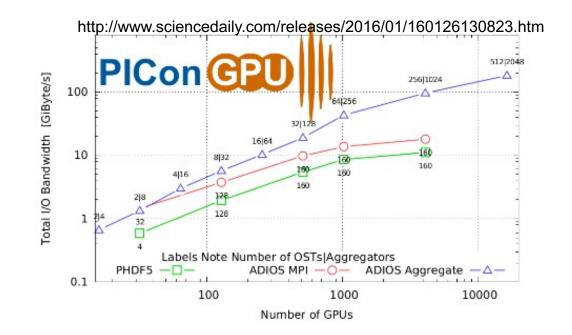
Research Details

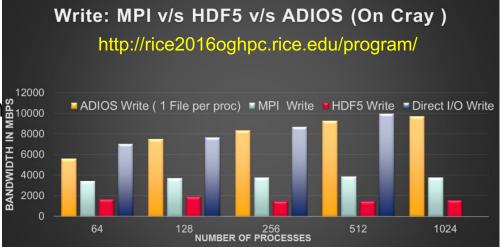

- Declarative, publish/subscribe API is separated from the I/O strategy and use of multi-tier storage
- Multiple implementations (engines) provide functionality and performance in different use cases
- Rigorous testing ensures portability
- Data reduction techniques are incorporated to decrease storage cost

https://github.com/ornladios/ADIOS2

Optimizations for a parallel file system

- Avoid latency (of small writes): Buffer data for large bursts
 use a type of self-describing log file format
- Avoid accessing a file system target from many processes at once
 - Aggregate to a small number of actual writers:
 - Avoid lock contention
 - Striping correctly & writing to subfiles
- Avoid global communication
- Topology-aware data movement that takes advantage of topology
 - Find the closest I/O node to each writer
 - Minimize data movement across racks/mid-planes

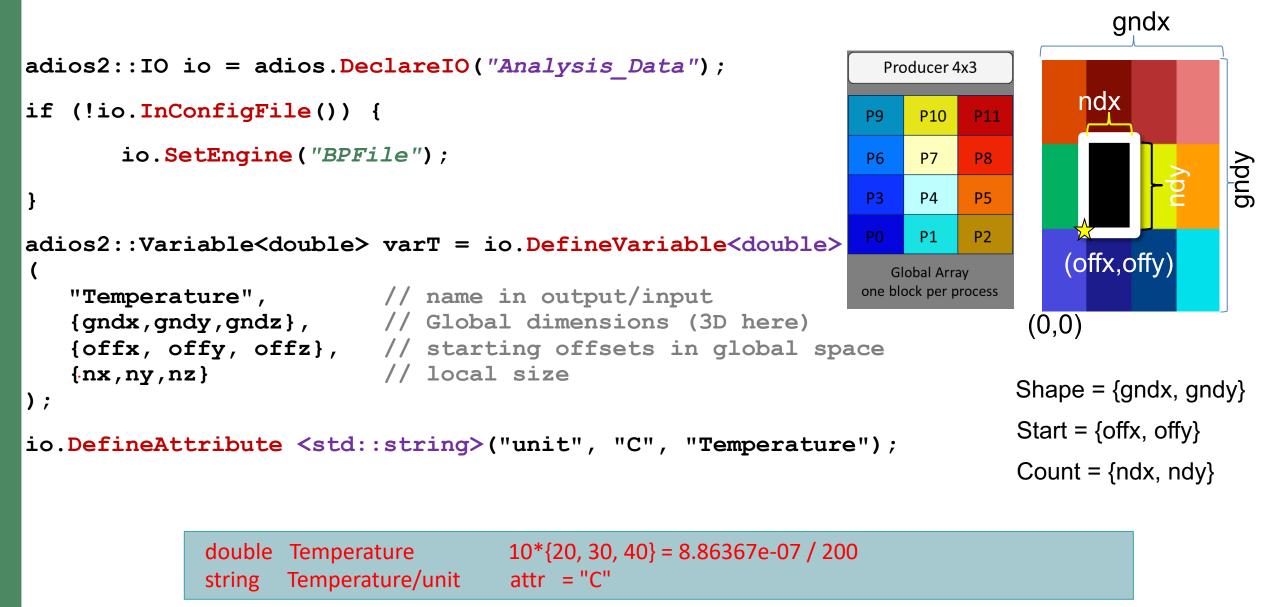

Application	Nodes/GPUs	Data Size/step	I/O speed
SPECFEM3D	3200/19200	250 TB	~2 TB/sec
GTC	512/3072	2.6 TB	~2 TB/sec
XGC	512/3072	64 TB	1.2 TB/sec
LAMMPS	512/3072	457 GB	1 TB/sec

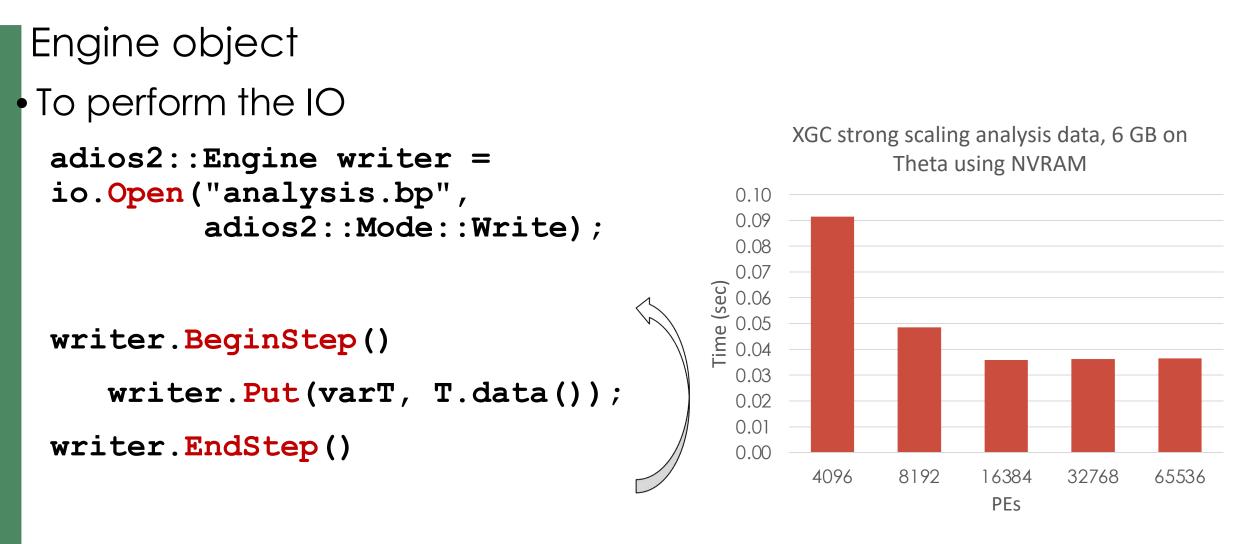

Liu, Q., Klasky, S., et al. "Hello ADIOS: the challenges and lessons of developing leadership class I/O frameworks." Concurrency and Computation: Practice and Experience 26.7 (2014): 1453-1473.

klasky@ornl.gov, scottk007@gmail.com

Impact to some LCF applications

- Accelerators PIConGPU
 - M. Bussmann, et al. HZDR
 - Study laser-driven acceleration of ion beams and its use for therapy of cancer
 - Computational laboratory for real-time processing for optimizing parameters of the laser
 - Over 184 GB/s on 16K nodes on Titan
 - 80 TB / output step
- Seismic Imaging RTM by Total Inc.
 - Pierre-Yves Aquilanti, TOTAL E&P in context of a CRADA
 - TBs as inputs, outputs PBs of results along with figures intermediate data
 - Company conducted comparison tests among several I/O solutions. ADIOS is their choice for other codes: FWI, Kirchoff




ADIOS Approach: "How"

- I/O calls are of declarative nature in ADIOS
 - which process writes/reads what
 - add a local array into a global space (virtually)
 - EndStep() indicates that the user is done declaring all pieces that go into the particular dataset in that output step or what pieces each process gets
- I/O strategy is separated from the user code
 - aggregation, number of sub-files, target file-system hacks, and final file format not expressed at the code level
- This allows users
 - to choose the best method available on a system without modifying the source code
- This allows developers
 - to create a new method that's immediately available to applications
 - to push data to other applications, remote systems or cloud storage instead of a local filesystem

ADIOS Variable

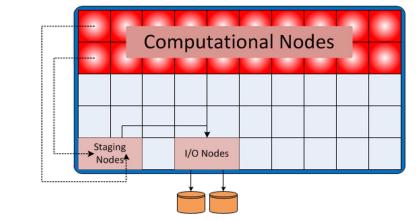
writer.Close()

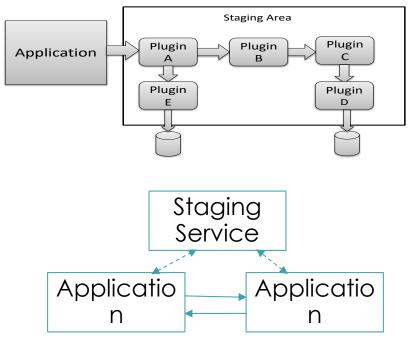
Put API explained

engine.Put(varT, T.data())

• Equivalent to "write"

engine.Put(varT, T.data(), adios2::Mode:Deferred)


- This does NOT do the I/O (to disk, stream, etc.) once put return.
- you can only reuse the data pointer after calling engine.EndStep()


engine.Put(varT, T.data(), adios2::Mode:Sync)

- This makes sure data is flushed or buffered before put returns
- Get() works the same way
- The default mode is deferred
- Disk I/O:
 - Put only flushes to disk if the buffer is full, otherwise flushed in EndStep()
 - No difference in performance between using sync and deferred Put

Coupling with staging

- Move data directly to remote memory in a "staging" area
 - a.k.a in situ, online, concurrent processing
- Decouple application performance from storage performance
- Enhance data services by providing an intermediate common area (staging) that reduces file system access costs
- Address performance/variability issue
- Components:
 - Asynchronous I/O buffers from Applications
 - Services provided as plugins:
 - Analytics & Visualization
 - Data Reduction

Key ideas for good performance of ADIOS for large writes

- Avoid latency (of small writes)
 Buffer data for large bursts
- Avoid global communication
 - ADIOS has that for metadata only, which can even be postponed for post-processing
- Later: Topology-aware data movement that takes advantage of topology
 - Find the closest I/O node to each writer
 - Minimize data movement across racks/mid-planes (on Bluegene/Q)

ADIOS-BP stream/file format

- Self-describing data format
- Allows data from each node to be written independently with each other with metadata
- Ability to create a separate metadata file when "sub-files" are generated
- Allows variables to be individually compressed
- Has a schema to introspect the information, on each process
- Format is for "data-in-motion" and "data-at-rest"

CAK RIDGI

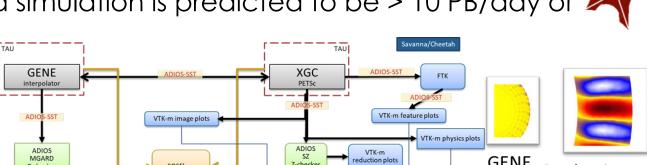
Core-edge

coupling

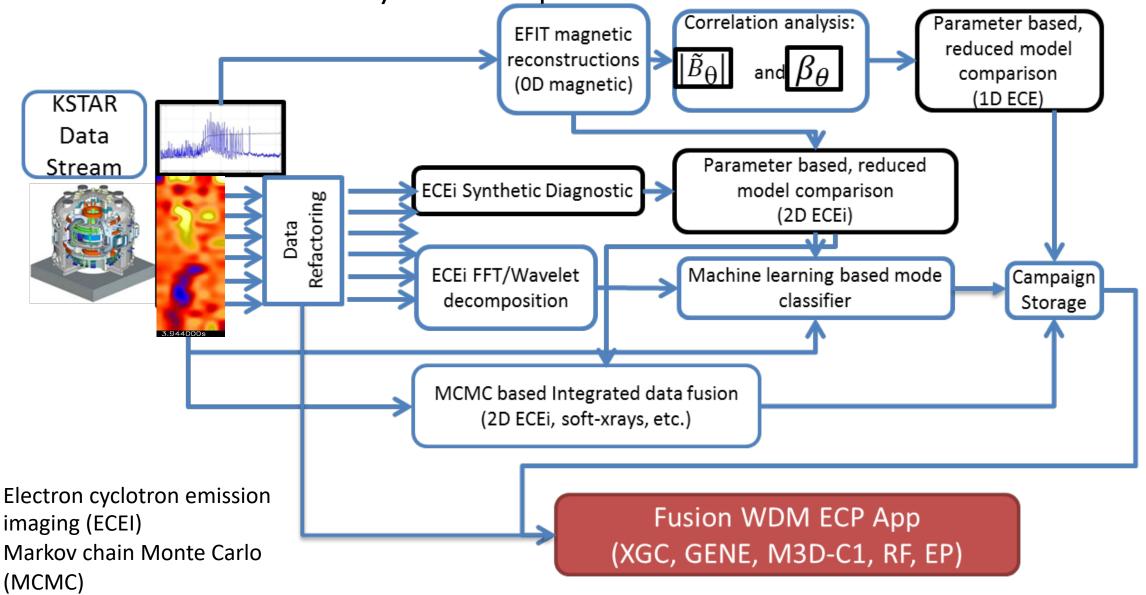
Interface

GENE

layer


XGC GENE PETSC interpolator 0 0.1 0.2 0.3 0.4 0 0.1 0.2 VTK-m feature plots ADIOS-SST VTK-m image plots $\langle Q_i/n_i \rangle_{\rho} [J/ms]$ VTK-m physics plot ADIOS ADIOS VTK-m J 6.5 MGARD GENE reduction plots Z-checker Overlapping region Z-checker XGC ADIOS-SST 0.2 0.3 0.2 t [ms] 0.4 VTK-m performance plots VTK-m J. Dominski; S. Ku; C.-S. Chang; J. Choi; E. Suchyta; S. Parker; reduction plot S. Klasky; A. Bhattacharjee; *Physics of Plasmas* 2018, 25,

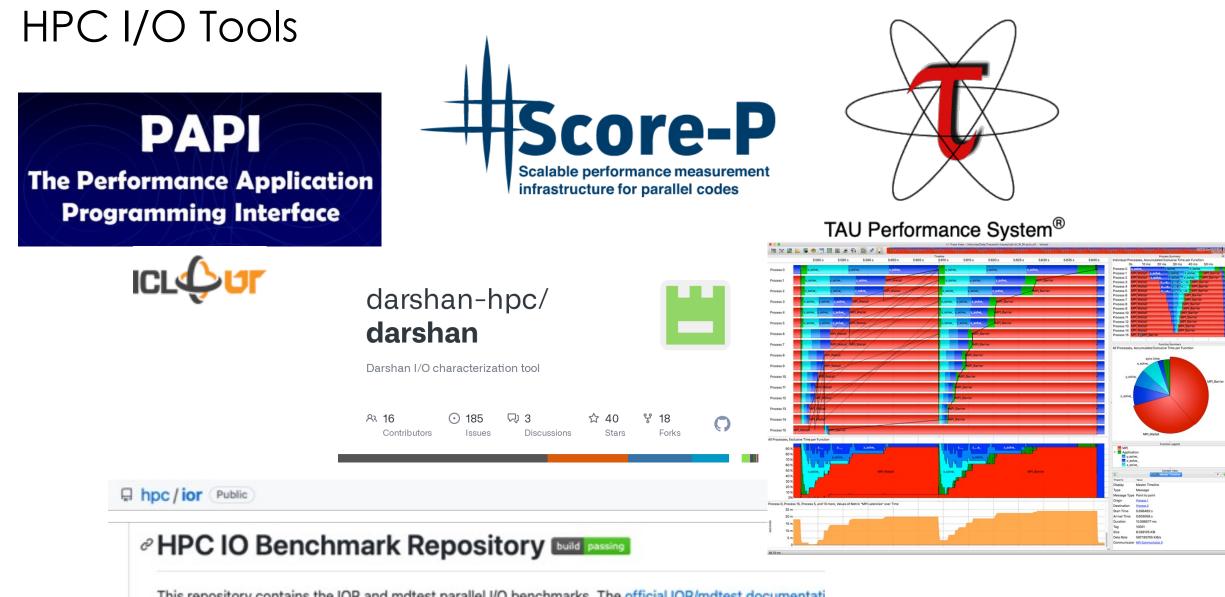
New I/O Pattern: emerging from running complex in situ workflows


PI: Amitava Bhattacharjee, PPPL, 2.2.2.05 ADSE12-WDMApp: High-Fidelity Whole Devicehang, PPPL Modeling of Magnetically Confined Fusion Plasmas

- Different physics solved in different physical regions of detector (spatial coupling)
- Core simulation: **GENE** Edge simulation: **XGC** Separate teams, separate codes
- Recently demonstrated first-ever successful kinetic coupling of this kind
- Data Generated by one coupled simulation is predicted to be > 10 PB/day or ullet(c) w=0.85 λ_{-}

DOI: 10.1063/1.5044707

Near Real Time Analysis of Experimental Data



New I/O Pattern: Streaming, reducing data from experiments to HPC with ML

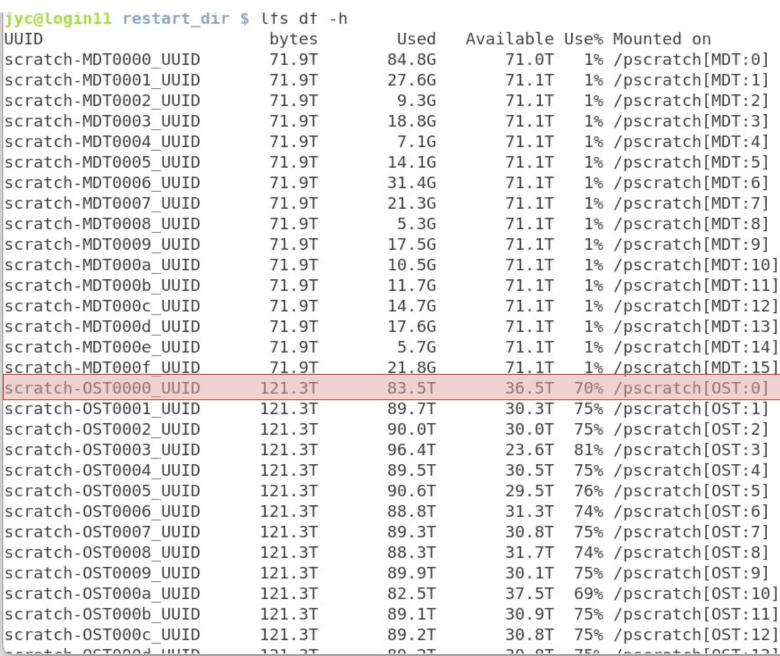
I/O Performance measurement tools

This repository contains the IOR and mdtest parallel I/O benchmarks. The official IOR/mdtest documentati be found in the docs/ subdirectory or on Read the Docs.

Hands-on demonstration

Lustre Commands

jyc@login11 restart_dir \$ lfs mdts jyc@login11 restart_dir \$ lfs osts MDTS: OBDS: 0: scratch-MDT0000 UUID ACTIVE 0: scratch-OST0000 UUID ACTIVE 1: scratch-MDT0001 UUID ACTIVE 1: scratch-OST0001 UUID ACTIVE 2: scratch-MDT0002 UUID ACTIVE 2: scratch-OST0002 UUID ACTIVE 3: scratch-MDT0003 UUID ACTIVE 3: scratch-OST0003 UUID ACTIVE 4: scratch-MDT0004 UUID ACTIVE 4: scratch-OST0004 UUID ACTIVE 5: scratch-MDT0005 UUID ACTIVE 5: scratch-0ST0005 UUID ACTIVE 6: scratch-MDT0006 UUID ACTIVE 6: scratch-OST0006 UUID ACTIVE 7: scratch-MDT0007 UUID ACTIVE 7: scratch-OST0007 UUID ACTIVE 8: scratch-MDT0008 UUID ACTIVE 8: scratch-OST0008 UUID ACTIVE 9: scratch-MDT0009 UUID ACTIVE 9: scratch-OST0009 UUID ACTIVE 10: scratch-MDT000a UUID ACTIVE 10: scratch-OST000a UUID ACTIVE 266: scratch-OST010a UUID ACTIVE 11: scratch-MDT000b UUID ACTIVE 267: scratch-OST010b UUID ACTIVE 12: scratch-MDT000c UUID ACTIVE 268: scratch-OST010c UUID ACTIVE 13: scratch-MDT000d UUID ACTIVE 269: scratch-OST010d UUID ACTIVE 14: scratch-MDT000e UUID ACTIVE 270: scratch-OST010e UUID ACTIVE 15: scratch-MDT000f UUID ACTIVE 271: scratch-OST010f UUID ACTIVE 272: scratch-OST0110 UUID ACTIVE 273: scratch-OST0111 UUID ACTIVE

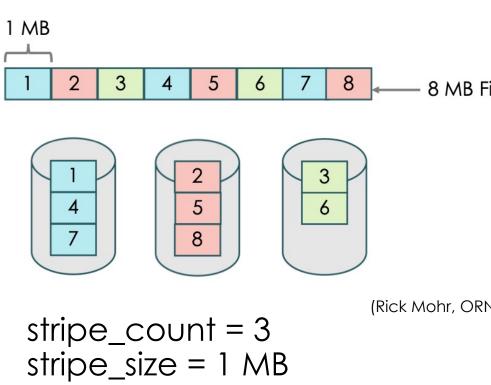

\$ lfs mdts
\$ lfs osts

CAK RIDGE

\$ lfs du

M	D	[s	

OSTs



CAK RIDGE

47

Open slide master to edi

\$ lfs getstripe

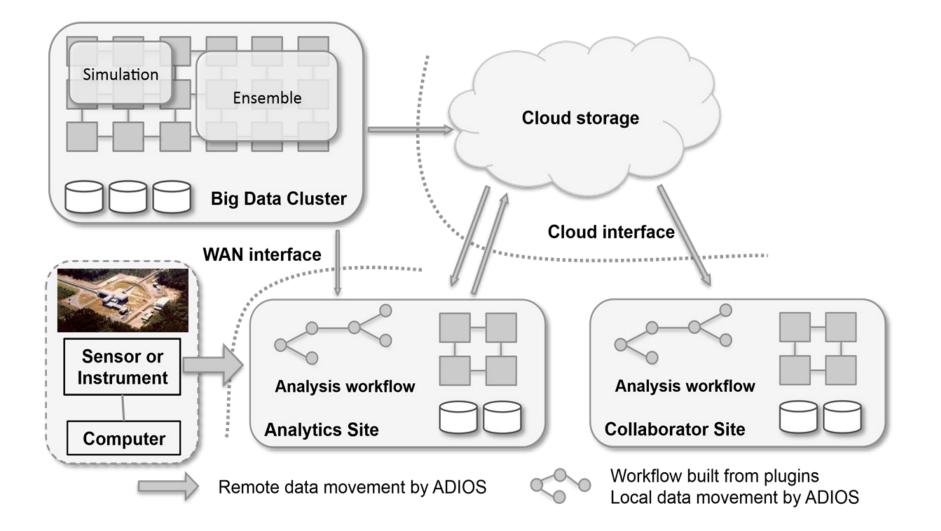
	<pre>jyc@login11 restart xgc.restart.00020.0 lmm_stripe_count: lmm_stripe_size: lmm_pattern: lmm_layout_gen: lmm_stripe_offset:</pre>	op/data.0 1 1048576 raid0 0	tstripe xgc.resta objid 0x21f57d	art.00020.bp/dat group 0x27c0000407	a.*
3 File	xgc.restart.00020.l lmm_stripe_count: lmm_stripe_size: lmm_pattern: lmm_layout_gen: lmm_stripe_offset: obdidx 222	1 1048576 raid0 0	objid 0x242988	group 0x4400000418	
ORNL)	xgc.restart.00020.l lmm_stripe_count: lmm_stripe_size: lmm_pattern: lmm_layout_gen: lmm_stripe_offset: obdidx 103	1 1048576 raid0 0	objid 0x21ebe5	group 0x2640000424	

Backup

Push: The widening compute-data aap on multi-tier storaae

- Filesystem/network bandwidth falls behind CPU/memory: Fewer bytes/operation -Need efficient I/O
- Filesystem has an additional layer (Burst Buffer) which is different on all of the LCFs/NERSC- Need new functionality to write/read to all storage layers

<u>-aara aap</u>		ISIOIQUE	
Feature	Titan	Summit	
Peak Flops	27 PF	200 PF	
Application Performance	Baseline	5-10x Titan	
Number of Nodes	18,688	~4,600	
Node performance	1.4 TF	> 40 TF	
Memory per Node	32 GB DDR3 + 6 GB GDDR5	512 GB DDR4 + 96 GB HBM	
NV memory per Node	0 1600 GB		
Total System Memory	710 TB	10 PB (2.3 PB DDR4 + 0.4 PB HBM + 7.4 PB NVRAM)	
System Interconnect (node injection bandwidth)	Gemini (6.4 GB/s)	Dual Rail EDR-IB (23 GB/s	
Interconnect Topology	3D Torus	Non-blocking Fat Tree	
Processors per node	1 AMD Opteron™ ² 1 NVIDIA Kepler™	2 IBM POWER9™ 6 NVIDIA Volta™	



I/O optimizations for next generation HPCs

Vision: building scientific collaborative applications

