
CSE 6230 – HPC Tools and
Applications

Ramakrishnan Kannan
Shruti Shivakumar

Introduction
• Course Instructor – Ramakrishnan Kannan(rkannan3@gatech.edu)
• Teaching Assistant – Shruti Shivakumar (sshivakumar9@gatech.edu)
• Number of Registered Students – 60+
• Time and Venue

• Tuesdays and Thursdays from 5:00-6:15pm in Ford Environment Science and
Technology Building, Room L1255.

• Mode
• Hybrid – All classes will be in-class and as well as over zoom
• Check the website schedule for in-class lectures

mailto:rkannan3@gatech.edu

Grading
• Three components

• 4 Programming assignments – 30%
• Shared memory – 5%
• Accelerated – 5%
• Distributed Memory – 10%
• Final Complexity and performance analysis – 10%

• Midterm – 10%
• Final Group Project – 60%

• Proposal – 15%
• Demonstration – 15%
• Report – 15%
• Final Presentation – 15%

• All deliverables and exams will be graded by TA. The project proposal and
final presentation will be graded by both TA and Instructor

Prerequisites

• Programming experience – C/C++.
• Algorithm Analysis
• Preferred Courses

• HPC Architecture – Tom Conte or Rich Vuduc
• Algorithms – One of CS 6550 / CSE6140 / CSE6220

• Time requirements
• Can vary based on student’s background and experience
• Programming and debugging experience
• Don’t wait till last minute for programming assignments and project

Previous 6230 Courses

• Professor Ümit V. Çatalyürek lectures
• Professor Chow’s lectures
• Professor Vuduc’s lectures

Office Hours

• Instructor Office hours and location
• Thursday 2-3pm EST
• Check Piazza for Zoom Link

• TA office hours and location
• Tuesday 3:45-4:45pm EST
• Check Piazza for Zoom Link

Announcement and Discussions

• Website - https://ramkikannan.com/teaching/
• Piazza - https://piazza.com/gatech/spring2023/cse6230
• Canvas/(Github classroom?) -

Late Policy and Due dates

• All assignments will be available on canvas after the class at 6pm on
the announcement date. Check the website for details.
• All assignment are due before the class at 4:55pm on the deadline
• Two days extension can be provided if notified a day before the

deadline to the TA for a 20% penalty.
• No penalties for medical reasons or emergencies.

Introduction to HPC
Motivated out of Rich Vuduc’s Lectures, SC’22 Parallel Computing 101

Tutorial, https://hpc.llnl.gov/training/tutorials/

Introduction

• In this first half we introduce parallel computing and some useful
terminology.
• We examine many of the variations in system architecture, and how

they affect the programming options.
• We will look at a representative example of a large

scientific/engineering code, and examine how it was parallelized. We
also consider some additional examples.
• https://hpc.llnl.gov/training/tutorials/
• Jack Donggarra’s Turing Award Lecture

https://hpc.llnl.gov/training/tutorials/

Scientific Applications

Energy

Automotive

Finance

Aerospace

Database

Telecomm
Weather &
Climate

Motivation for Parallel Computing
• Natural fit: Real world is inherently parallel (weather, traffic jams, assembly

lines, ant colonies, tutorials, ...).
• Parallel computers can be the only way to achieve specific computational

goals
• ExaFLOPS (10^18 Floating Point Operations per Second) for complex problems
• Handling of exabytes of storage in data centers
• Mega-transactions per second for search engines, ATM networks, digital multimedia,

social media
• Next Generation AI problems

• All computers are parallel -- cellphone, M1, AMD and Intel, and the
parallelism is increasing
• Save time to solution and/or money – Accelerating scientific discoveries
• Solve larger or more complex problems (e.g. finer grids)
• CPU Scavenging Grid – Better Utilization of Idle Computers

Basic Terminologies

• Classical Problem - The definitions are fuzzy, many terms are not
standardized, definitions often change over time.
• Many algorithms, software, and hardware systems do not match the

categories, often blending approaches.

Basic Terminologies - II
• Parallel Computing- Solving a task by simultaneous use of multiple

processors in a unified architecture.
• High Performance Computing- Solving large problems via supercomputers

+ fast networks + massive storage.
• Embarrassingly Parallel - Solving many similar, but independent, tasks. E.g.,

parameter sweeps.
• Multi-core/Many-core Processors - Almost all processors today. Multiple

compute cores on a single chip. They share memory, operating system and
network.
• Cluster Computing - Combination of commodity units (e.g. multi-core

processors) to build parallel system.
• Pipelining (streaming) - Breaking a task into steps performed by different

units, much like an assembly line.

Pipelining – Automation Industry

Top500 -- Performance

*As of 1/10/22

4004
8008

8080
8085

8086

286
386

486

P6
Pentium®

1

10

100

1000

1970 1980 2000 20101990

Year

Po
w

er
D

en
si

ty
 (W

/c
m
2)

Hot Plate

Nuclear
Reactor

Surface
Rocket
Nozzle

10000
Sun s

Source: Patrick Gelsinger,
Shenkar Bokar, IntelÒ

Scaling clock speed (business as usual) will not work

Parallelism & power Is it better to increase speed by doubling frequency or cores?

4004
8008

8080
8085

8086

286
386

486

P6
Pentium®

1

10

100

1000

1970 1980 2000 20101990

Year

Po
w

er
D

en
si

ty
 (W

/c
m
2)

Hot Plate

Nuclear
Reactor

Surface
Rocket
Nozzle

10000
Sun s

Source: Patrick Gelsinger,
Shenkar Bokar, IntelÒ

Scaling clock speed (business as usual) will not work

Parallelism & power Is it better to increase speed by doubling frequency or cores?

Parallelism & power Is it better to increase speed by doubling frequency or cores?

4004
8008

8080

8085

8086

286
386

486
Pentium®

P6

1

10

100

1000

10000

1970 1980 1990 2000 2010

Year

Po
w

er
 D

en
si

ty
 (W

/c
m

2)

Hot Plate

Nuclear

Reactor

Rocket
Nozzle

Sun�s
Surface Source: Patrick Gelsinger,

Shenkar Bokar, Intel®

Scaling clock speed (business as usual) will not work

Performance / (cores)⇥ (freq)
Power / (cores)⇥ (freq2.5)

Parallelism & power
Observe transition in ~ 2004.

Source: K. Yelick @ UCB – http://www.cs.berkeley.edu/~demmel/cs267_Spr11/

1000

100

10

1

1000000

100000

10000

10000000

0
1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)
Frequency (MHz)
Power (W)
Cores

http://www.cs.berkeley.edu/~demmel/cs267_Spr11/

Source: Marat Dukhan <mdukan3@gatech.edu>

mailto:mdukan3@gatech.edu

Crash Simulation

• A greatly simplified model, based on parallelizing crash simulation for
Ford Motor Company. Simulations save significant money and time
compared to testing real cars
• This example illustrates various aspects common to many simulations

and other large-scale applications.

Finite Element Representation

• Car is modeled by a triangulated surface (elements).
• The simulation models the movement of the elements, incorporating

the forces on them to determine their new position.
• In each time step, the movement of each element depends on its

interaction with the other elements that it is physically adjacent to.
• In a crash, elements may end up touching that weren’t touching

initially (not good!)
• The state of an element is its location, velocity, and information such

as whether it is metal that is bending.

Car and Finite Element Representation

Serial Crash Simulation

• For all elements
• Read State(element), Properties(element), Neighbor_list(element)

• For time=1 to end_of_simulation
• For element = 1 to num_elements

• Compute State(element) for next time step, based on previous state of element
and its neighbors, and on properties of element

Simple Parallelization

• Parallel computer based on PC-like processors linked with a fast
network, where processors communicate via messages. Distributed
memory or message-passing .
• Distribute elements to processors, each processor updates the

positions of the elements it contains: owner computes .
• All machines run the same program: SPMD , single program multiple

data.
SPMD is the dominant form of parallel computing.

A Distributed Car

Parallel Crash Simulation

Concurrently for all processors P
• For all elements assigned to P

• Read State(element), Properties(element), Neighbor-list(element)

• For time=1 to end-of-simulation
• For element = 1 to num-elements-in-P

• Compute State(element) for next time step, based on previous state of element and its
neighbors, and on properties of element

Distributing the car

• How is the car distributed across P?
• Typically element assignment determined by serial preprocessing using

domain decomposition approaches described later.
• Need to keep the load balanced among the processors, otherwise some will

be idle waiting for others

Connecting Pieces

• How does processor keep track of elements in other processors?
• Ghost cells - (halos) are copies of values computed elsewhere
• Need to minimize communication time

How good is a parallel computation?

• An important component of effective parallel computing is
determining whether the program is performing well. If it isn’t, or
can’t be scaled to the target number of processors, then one needs to
determine the causes of the problem and develop better approaches.

Some definitions

• For a given problem A, let
• SerTime(n) = Time of best serial program to solve A

for input of size n.
• ParTime(n,p) = Time of the parallel

program+architecture to solve A for input of size n,
using p processors.

• Note that SerTime(n) ≤ ParTime(n,1).
• Speedup(n,p): SerTime(n) / ParTime(n,p)
• Work(n,p): p · ParTime(n,p) ← cost
• Efficiency(n,p): SerTime(n) / [p · ParTime(n,p)]

0 < Speedup ≤ p

Serial Work ≤ Parallel Work < ∞

0 < Efficiency ≤ 1

Speedup

processors

s
p
e
e
d
u
p

pe
rfe
ct

occasional

comm
on

Very rare. Some reasons for speedup > p
(efficiency > 1)

• Parallel computer has p times as much
RAM so higher fraction of program
memory in RAM instead of disk. .An
important reason for using parallel
computers

• In developing parallel program a better
approach was discovered, older serial
program was not best possible.

• A useful side-effect of parallelization

Amdahl’s Law

• Amdahl [1967]: Let f be fraction of
time spent on operations that are
performed serially. Then for

• ParTime(p) ≥ SerTime(p) · ! + !"#
$

• Speedup(p) ! !
" # !"#

$
• Which implies

Speedup !1/f

Amdahls Law - II
• Parallelization usually adds communication

– which Amdahls doesn’t consider
• For Crash: ghost cells sent every time step

and periodic global communication to
check if parts are colliding.

work

work

work

work

work

work

work

work

work

work

perfect
parallel

perfect
parallel

serial

neighbor
comm

neighbor
comm

NewWork

work

work

work

work

work

work

work

work

work

work

perfect
parallel

perfect
parallel

global
comm

work

work

work

work

work

Amdahl's Law
serial

perfect
parallel

• Hope
• Algorithm: New algorithms

with much smaller values of
f .

• Necessity is the mother of
invention.

• Memory hierarchy: More
time spent in RAM than disk.

• Scaling: Usually time spent in
serial portion of code is a
decreasing fraction of the
total time as problem size
increases.

Program Structure

Often serial part grows with n much slower than total time.

Serial, time grows slowly with n

Parallelizable loop, grows with n

Serial, fixed time

Parallelizable loop within loop,
time grows very rapidly with n

Serial, time grows slowly with n

Common Program Structure

Often serial part grows with n much slower than total time.

Serial, time grows slowly with n

Serial, time grows slowly with n

Parallelizable loop, grows with n

Parallelizable loop within loop,
time grows very rapidly with n

Serial, fixed time

I.e., as n ↗ Amdahl’s “f” ↘

Stout and Jablonowski – p. 31/237

Scaling
• Utilize large computers by increasing n as p increases
• Fix the amount of data per processor: weak scaling

• Efficiency can remain high if communication does not
increase excessively

• Warning: efficiency improves, but parallel time will
increase if SerTime(n) superlinear (ω(n)).

• Amdahl considered strong scaling : n is fixed
• Linear speedup is difficult

• Nothing scales to arbitrarily many processors.
• However, for most users, the important question is:

• Have I achieved acceptable performance on my
software/hardware system for a suitable range of data and
system sizes?

Weak Scaling

Strong Scaling

