
CSE 6230 - Code Walkthrough
Sooraj Karthik

Key Ideas

1. SIMD Instructions
2. Instruction Level Parallelism
3. Minimize memory operations

a. Tiling
b. Caching (CPU)
c. Coalescing (GPU)
d. Vectorized Loads (GPU)
e. Load data once, use it multiple times

CPU - Transpose for Cache

CPU - Transpose for Cache

CPU - Tiling

CPU - Reusing Loaded Memory

CPU - Reusing Loaded Memory

CPU - Notes About Tiling

1. Why didn’t you tile over k?
a. Too many boundary cases thanks to calculating a 2x2 dot product at once
b. The branch statements added (like 4 if statements) actually slowed down the more than the

tiling helped
2. Why not tile over the entire matrix?

a. Notice we didn’t tile over the entire matrix if it's not a multiple of tile sizes
b. Again needed to add a bunch of if statements and I didn’t want to write that much code
c. Solution: add non-tiled code at the end to calculate the remainder of the matrix

CPU - Other Details (MPI)

1. Same implementation is used for MPI (just removed omp parallel for directives)
2. Support for 3D domain decomposition (x, y, z)
3. Scatter blocks of A and B
4. Only send blocks of C to the processors with z=0

a. Save some communication time
b. Only need add β*C once

GPU - Optimizations Overview

1. Each tread calculates an 8x8 block of C
2. Use warp tiling

a. Just a smart way of choosing which parts of the matrices each thread operates on
3. Use vectorized loads, stores, and computations (SIMD)
4. Prefetch memory from GMEM to SHMEM
5. Double buffered SHMEM to remove a synchronization inside dot-product loop

GPU - Algorithm Overview

1. Figure out which parts of matrices to operate on
2. Do initial fetch from global memory and write to shared memory
3. Load first vectors to operate on from shared memory
4. Tiled iteration over k with tile size = 8

a. Prefetch data from global memory for next tile
b. Computation for current tile

i. Prefetch next vectors to operate on from shared memory
ii. Do math

c. Write prefetched data to shared memory (hopefully it will be done by the time we finish doing
computation)

d. Load next vectors to operate on from shared memory
5. Load C from gmem (no need for shmem since value is accessed by only one thread)
6. Calculate final values and store back into C

GPU - Vectorized Operations

GPU - Double Buffer Shared Memory

GPU - Prefetching from Global Memory

GPU - Prefetch From Shared Memory

GPU - Calculate Dot Product

GPU - Write Prefetch to Shared Memory

GPU - Optimization Performance Gains

Large Impact:

1. Transposing B when packing into shmem (2x performance)
2. 8x8 computation per thread (9-10x performance)

a. Making better use of the 64k registers per thread block
3. Vectorized computation (SIMD) + Warp Tiling (+60% performance)

a. Access to same shmem address within a warp can be coalesced
4. Double Buffering (+10-15% performance)

Minimal Impact

1. Prefetching (So much extra code for barely 3% improvement 😞)
2. Vectorized load/store (~2% improvement)

a. Should have used double2 instead since max memory transaction size is 128 bits

GPU - Other Details (Padding, MPI)

1. Need to pad input matrices to a multiple of 128 before calling kernel
a. Slower to check boundaries on GPU rather than just padding on CPU side thanks to openmp

2. For MPI+Cuda DSRGEMM
a. Copy-paste code change dot product operations

i. Accumulating operator becomes min
1. min is like 4x slower than addition but oh well :(

ii. Multiplication becomes addition
b. Repurpose domain decomposition code from MPI DGEMM

i. Made scattering more efficient since we measured communication time

Questions? (I know that was a lot)

Optimizing DGEMM Implementations: OpenMP,
MPI, and CUDA

Fan Qu

1

CONTENTS

1 Introduction 2 Single CPU

3 OpenMP 4 MPI

5 CUDA 6 Reference

2

Introduction

• DGEMM stands for Double-precision General Matrix
Multiply, a core operation in linear algebra

• 𝐶 = 𝛼 ⋅ 𝐴𝐵 + 𝛽 ⋅ 𝐶

3

Introduction

• DGEMM is both computationally intensive and memory intensive.
• Floating-point arithmetic is fast, access to memory is slow.

Optimizing general matrix multiplication is mostly about optimizing
memory accesses.

4

Single CPU Core

• When M=N=K=4096,
• Our DGEMM: 22.41 Gflops
• OpenBLAS: 67.57 Gflops

We are still far from optimal performance!
About 33% of OpenBLAS

5

Single CPU Core

● Blocked Data
● Micro Kernel 4x4
● Packing Data
● SIMD

6

Blocked Data

7

Use blocked matrices to increase cache hit rate.

However, we didn’t spend a lot of time to investigate the
best MC,NC,KC parameters for the cache with the CPU
(Intel(R) Xeon(R) Gold 6226 CPU) we tested.

Micro Kernel

8

• Micro Kernel can be viewed as secondary level of blocking.
• We use 4x4 micro kernel, which is suitable to add SIMD

instructions in the following optimization steps.

Packing Data

9

• Regardless of whether we choose a
matrix representation with row- or column-
major order, we always need access to
non-contiguous memory.

• We can first pack the discontinuous
elements in the matrix into continuous
memory to improve the efficiency of
subsequent multiple accesses.

SIMD

10

• Use AVX2 SIMD instructions to accelerate the computation
• We have not fully optimized the instruction generation and scheduling.

In particular, we are currently using a disproportionate share of LOAD
instructions.

OpenMP

11

0

200

400

600

800

1000

1200

1400

1600

0 4 8 12 16 20 24

G
flo

p/
s

Number of Processors

DGEMM Performance (N=4096)

My OpenBLAS

OpenMP

12

0

4

8

12

16

20

24

0 4 8 12 16 20 24

Sp
ee

du
p

Number of Processors

Speedup vs Number of Processors (N=4096)

My OpenBLAS

OpenMP

13

• We can choose to parallelize the processing at different levels of the loop.
• In the end we choose to parallelize at the 𝑘! level. (which is 𝑚! in our code)

Figure from [1]

OpenMP

14

• We need to let every code has its private packing data
• The number of iterations of the parallel loop is M/MC. In order to ensure

a higher degree of parallelism, MC cannot be too large; in order to
maintain the effect of block, MC cannot be too small.

We choose m" = min(4 ⌈ #
$⋅&'()*+,-

⌉, 64)

MPI

15

Performance, M = 36864, N=18432, K=4608

MPI

16

Speedup, M = 36864, N=18432, K=4608

MPI

17

• We didn’t use the 3-d topology but use the simple split
similar to the OpenMP version.

• We parallelize at the 𝑚! level.
• Every processor holds (M/p, K) local_A, (K, N) local_B,

(M/p, N) local_C

MPI

18

Advantages:
• Easy to implement
• No communication during computational kernel stage

Disadvantages:
• Cannot scale well when M < p.
• Memory usage is not optimal as we keep a full copy of

B for every processor

CUDA

19

0.03125

0.0625

0.125

0.25

0.5

1

2

4

8

128 256 512 1024 2048 4096 8192
TF

lo
p/

s

N (Matrix size)

Performance vs Matrix size (N)

My CuBLAS

When M=N=K=4096,
our performance is
5.89 Tflop/s, cuBLAS
is 6.425 Tflop/s

CUDA

20

• Learn a lot from online resources [2, 3, 4, 5].

• Data Blocking
• Micro Kernel
• Vectorized Load
• Warp-level parallelism

CUDA

21

Vectorized Load

We can use double4 to utilize efficient load instruction

CUDA

22

Warp-level parallelism

• Different warps can execute in parallel on different warp
schedulers, and concurrently on the same warp scheduler.

• Memory accesses to the same memory address in shared
memory within the same warp can be coalesced

1. Smith, Tyler M., et al. "Anatomy of high-performance many-threaded matrix multiplication." 2014
IEEE 28th International Parallel and Distributed Processing Symposium. IEEE, 2014.

2. https://github.com/NVIDIA/cutlass/blob/master/media/docs/efficient_gemm.md
3. https://siboehm.com/articles/22/CUDA-MMM
4. https://github.com/yzhaiustc/Optimizing-SGEMM-on-NVIDIA-Turing-GPUs
5. Huang, Jianyu, Chenhan D. Yu, and Robert A. van de Geijn. "Implementing Strassen's algorithm

with CUTLASS on NVIDIA Volta GPUs." arXiv preprint arXiv:1808.07984 (2018).

References

23

Thanks

24

Assignment 3 Presentation

Peidi Song
1

Host <-> Device

• device_allocate_init
• cuErrChk(cudaMalloc()) and cuErrChk(cudaMemcpy()) for all buffers

• device_free
• cuErrChk(cudaFree()) for all buffers

• device_to_host
• cuErrChk(cudaMemcpy()) for vals

2

Notice 1: No Tensor Core

• “Tensor Cores support double-precision floating point
operations on devices with compute capability 8.0 and higher.”

• Compute capability for V100 is 7.0
• No Tensor Core can be used in this assignment

3

• https://docs.nvidia.com/cuda/archive/11.1.1/cuda-c-programming-guide/index.html#wmma-double

• Cuda check code: https://gist.github.com/f0k/0d6431e3faa60bffc788f8b4daa029b1

Kernel Code Skeleton

• Loop splitting: SSRSRS (S: Spatial; R: Reduce)
for {i0, j0} // bind to block

for {i1, j1} // bind to thread/warp

for {k0}

load A, B: global -> shared

for {k1}

for {i2, j2} // bind to warp and sequential

load A, B: shared -> local

compute C: local

store C: local -> global

4

kernel_params_init

• Define constants tile_m, tile_n, tile_k
• To decide shared memory size for A and B

• Define constants warp_size, bdx, bdy
• warp_size is always 32
• bdx and bdy decide block size

block_size = dim3(bdx * warp_size, bdy);

grid_size = dim3(

(C.nrows+tile_m*bdx-1)/(tile_m*bdx),

(C.ncols+tile_n*bdy-1)/(tile_n*bdy)

);

shmem_size = (bdx*tile_m*tile_k + bdy*tile_n*tile_k) * sizeof(double);

5

Shared and Local Memory

• Define constants warp_size_x*warp_size_y=warp_size
// shared memory

extern __shared__ double shared_m[];

double* const a_shared = shared_m;

double* const b_shared = a_shared + bdx/warp_size*tile_m*tile_k;

// Local

double a_frag[tile_m/warp_size_x];

double b_frag;

double c_frag[tile_m*tile_n/warp_size];

6

Global -> Shared: Strided Load

• Load with stride bd=bdx*bdy*warp_size
for (uint32_t k0 = 0; k0 < K; k0 += tile_k){

__syncthreads();

for (uint32_t i = 0; i < bdx*tile_m*tile_k/bd; i++)

a_shared[i*bd+tid] = A[(i*bd+tid)%(bdx*tile_m) + (i*bd+tid)/(bdx*tile_m)*M + ...];

for (uint32_t i = 0; i < tile_k*bdy*tile_n/bd; i++)

b_shared[i*bd+tid] = B[(i*bd+tid)%tile_k+(i*bd+tid)/tile_k*K + ...];

__syncthreads();

... // Local load and compute

}

• Values of “...” can be calculated outside corresponding loop, i.e. ~constants

7

Local Load and Compute

• Smaller size GEMM
for (uint32_t k0 = 0; k0 < K; k0 += tile_k){

__syncthreads();

... // Load from global to shared

__syncthreads();

for (uint32_t k = 0; k < tile_k; k++){

for (uint32_t i = 0; i < tile_m/warp_size_x; i++)

a_frag[i] = a_shared[i + k*bdx*tile_m + ...];

for (uint32_t j = 0; j < tile_n/warp_size_y; j++){

b_frag = b_shared[k + j*tile_k + ...];

for (uint32_t i = 0; i < tile_m/warp_size_x; i++)

c_frag[i + j*tile_m/warp_size_x] += a_frag[i] * b_frag;

}}}

8

Store C back to Global

for (uint32_t j = 0; j < tile_n/warp_size_y; j++)

for (uint32_t i = 0; i < tile_m/warp_size_x; i++)

C[i + j*M + ...] = C[i + j*M + ...] * beta

+ c_frag[i + j*tile_m/warp_size_x] * alpha;

9

Notice 2: Indivision

• Tuned parameters for 4K*4K*4K size
• tile_m = tile_n = tile_k = 32
• bdx = bdy = 2
• warp_size_x = 16, warp_size_y = 2

• This only fits matrix size larger than 64*64*64
• Solution: if statement? Slow! (about 40%)
const uint32_t idx = (bx*bdx*warp_size+tx) / warp_size;

const uint32_t idy = by*bdy+ty;

for (k0){

__syncthreads(); ...; __syncthreads();

if (idx*tile_m < M && idy*tile_n < N){...}

}

10

Notice 2: Indivision con’d

• “Big-Small” Algorithm (Almost 75%)
• Called by lots of my high school classmates
• Decision tree algorithm

if (M >= 64 && N >= 64 && K >= 64){

// Codes without if-control

}

else{

// Codes with if-control

}

• Same for kernel_params_init
• I also modified tuned parameters in codes with if-control for simplicity

11

Notice 3: Stride Load Optimization

• bdx*tile_m is a factor of bd in “big” part
a_shared[i*bd+tid] = A[(i*bd+tid)%(bdx*tile_m) + (i*bd+tid)/(bdx*tile_m)*M + ...];

• This eliminates one “%” operator per global load

• Same for b_shared

• Over 75% after optimization

12

Notice 4: No Double Buffer

• Double buffer eliminates one syncthreads per iteration
for (k0){

... // use buffer k0%2 for loading

__syncthreads();

... // use buffer k0%2 for compute

}

• Don’t use double buffer, it speeds down

• Mainly because shared memory is already maximum, by using double buffer
we have to half the parameters

13

Thanks

14

Accelerated, Distributed
Memory Semi-Ring DGEMM

CSE 6230: High Performance Parallel Computing
Assignment 4

Presented by: Parima Devanshu Mehta

Problem Description
k n n

m k m

A B C

where,

Implement distributed-memory semi-ring DGEMM with:
• Multi-core parallelism per process using openMP

• GPU acceleration per process using CUDA

Domain Decomposition

• Adopted distribution strategy is 2D

• Each MPI process receives blocks of input A and B necessary to

compute a block of output C

k n n

m k m

A B C

P0 P2

P1 P3

P{0, 2}

P{1, 3}

P{0, 1} P{2, 3}

MPI DSRGEMM

• Each process spawns 8 threads to perform tiled semi-ring

DGEMM on local matrices

• Each thread computes a subblock of output C

Multi-core Parallelism using openMP

GPU Acceleration using CUDA

• Device memory is allocated for local matrices A, B, and C

and copied from host to device per process

• Kernel is launched for DSRGEMM computation

• Local output is copied back from device memory to host

memory, freeing the device memory

OpenMP DSRGEMM

Local A Local B Local C
T0 T2

T1 T3

T{0, 2}

T{1, 3}

T{0, 1} T{2, 3}

Local A Local B Local C

• Each process performs tiled semi-ring DSRGEMM

• Each thread computes a subblock of output C

OpenMP DSRGEMM

Local A subblock

• Each column in A is added to a row in B to compute partial

output in C

• OpenMP pragma SIMD used to improve performance

Local B subblock Local C subblock Sum

<

OpenMP DSRGEMM

Local A subblock Local B subblock Local C subblock Sum

<

• Partial outputs in entire subblock of C are computed using a

column of A and a row of B

• No elements in A or B are reloaded, allowing maximum data

reuse

OpenMP DSRGEMM

Local A subblock Local B subblock Local C subblock Sum

<

• Partial outputs in entire subblock of C are computed using a

column of A and a row of B

• No elements in A or B are reloaded, allowing maximum data

reuse

OpenMP DSRGEMM

Local A subblock Local B subblock Local C subblock Sum

<

• Partial outputs in entire subblock of C are computed using a

column of A and a row of B

• No elements in A or B are reloaded, allowing maximum data

reuse

OpenMP DSRGEMM

Local A subblock Local B subblock Local C subblock Sum

<

• Partial outputs in entire subblock of C are computed using a

column of A and a row of B

• No elements in A or B are reloaded, allowing maximum data

reuse

OpenMP DSRGEMM

Local A subblock Local B subblock Local C subblock Sum

<

• Partial outputs in entire subblock of C are computed using a

column of A and a row of B

• No elements in A or B are reloaded, allowing maximum data

reuse

OpenMP DSRGEMM

Local A subblock Local B subblock Local C subblock Sum

<

• Partial outputs in entire subblock of C are computed using a

column of A and a row of B

• No elements in A or B are reloaded, allowing maximum data

reuse

OpenMP DSRGEMM

Local A subblock

• Partial outputs in entire subblock of C are computed using a

column of A and a row of B

• No elements in A or B are reloaded, allowing maximum data

reuse

Local B subblock Local C subblock Sum

<

OpenMP DSRGEMM

Local A subblock

• Operating column-wise exploits spatial locality and column-

major layout in memory

• Cache requirement reduced per core due to data reuse:

L * W * 8 bytes (L = length of subblock, W = width of subblock)

Local B subblock Local C subblock Sum

<

CUDA DSRGEMM

Local C

• Local matrix C is divided into a 2D grid of blocks of size TILE_M * TILE_N

• Each thread per block computes T_M * T_N outputs

• Each block contains (TILE_M * TILE_N / T_M * T_N) threads

T0 T1

T2 T3

BLOCK(0, 0)

BLOCK(0, 1)

BLOCK(1, 0)

BLOCK(1, 1)

CUDA DSRGEMM

Local C

• Shared memory of size (TILE_M + TILE_N) * TILE_K dynamically

allocated

• All threads in a block simultaneously load TILE_M * TILE_K block of

local A and TILE_K * TILE_N block of local B in shared memory to

compute partial outputs in local C

• Vectorized loads/stored can be used to improved performance

Local BLocal A

CUDA DSRGEMM

Shared C

• Each thread uses register memory to load T_M elements from

column of shared A and T_N elements from row of shared B to

compute T_M * T_N outputs

• Output computation per thread is done using the algorithm described

for openMP implementation to allow data reuse

Shared B Shared A

T0, T1

T2, T3

T0, T2 T1, T3

T0 T1

T2 T3

CUDA DSRGEMM

Shared C

• Each thread uses register memory to load T_M elements from

column of shared A and T_N elements from row of shared B to

compute T_M * T_N outputs

• Output computation per thread is done using the algorithm described

for openMP implementation to allow data reuse

Shared B Shared A

T0, T1

T2, T3

T0, T2 T1, T3

T0 T1

T2 T3

Strong Scaling Plot

• Note:
• MPI processes need to be mapped per node for maximum openMP thread utilization

• CUDA DSRGEMM requires warmup to reduce CUDAAPI call overhead

MPI + CUDA Breakdown Plot

MPI + CUDA Breakdown Plot

MPI + OpenMP Breakdown Plot

MPI + OpenMP Breakdown Plot

Thank you!

Techniques about HW4
Changhai Man, cman8@gatech.edu

Communications
If we see the communications of Matmul in 3D grid, then:
• The input/output data is at the surface of the grid.
• For each grid, it is a computation node
• And to load/unload data to each node, it is like coloring the

surface of each small cube

How to?
• Scatter/Gather: m-n, m-k, n-k
• Broadcast/Reduce: m, n, k

Communications

Scatters: three
surface

Broadcasts: three
group of fibers

CPU version
Cache Efficient Access

1. By transpose matrix A prior to the Matmul,
the access pattern and storage pattern can
better matched, thus increase the cache
efficiency.

2. To make access of C efficient, the access
pattern should match the storage pattern,
thus the i-loop should be inside j-loop

CPU version
Tiling
To fully utilize the cache of CPU, we want to make sure that for each run, the data size should be able to kept
in the cache (instead of roundly kicked out by new data)

Loop order:
JBlock->iBlock->kBlock->j->i->k

For each block:
(i, k) = 8*32*128=32KB

matched L1d size

(j, k) = 32KB, (i, j) =
8*128*128=256KB.
(I, k) (j, k), (I, j) totally 320KB,
matched L2 size

For maximum 12 cores per
socket, total L3 size requirement
is: 320 * 12 = 3.84 MB, fit L3 size

CPU version
Other tricks:

• Access using pointer:
avoid time for calculating offset

• SIMD: Try to fit AVX512, SIMD=16

GPU version
Actually, similar to CPU but different in two things：
• More dimensions for for-loops: either in time or space
• More tilling level as there are more complicated memory hierarchy

For-loop parallelism: space or time
Loop order:

JBlock->iBlock->kBlock->jThread->iThread->k->j->I
Where:
• (Jblock, Iblock) => BlockIdx(SM level) Loop in Space
• Kblock Loop in Time
• (Jthread, Ithread) => ThreadIdx(SP level) Loop in Space
• k, j, i Loop in Time

Tiling and storage:
(Iblock, Kblock), (Jblock, Kblock), (Iblock, Jblock): GDDR (Global Mem)
(Ithread, k), (Jthread, k): Shared Mem
(Ithread, Jthread), (I, k), (J, k): reg files

GPU version
Aligned reg files for each thread

Shared mem and
Frags (Register Files)

