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• Interpreter
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Python and performance challenges

• Interpreted – Most of the things are known during runtime
• Type free language
• Parallel Processing
• Global Interpreter Lock (GIL)

• Python Global Interpreter Lock or GIL, is a mutex (or a lock) that allows only one thread 
to hold the control of the Python interpreter.



Multiprocessing
• multiprocessing.Pool() is the 

number of processes to create in 
the pool. 
• apply_async() function to pass 

the arguments to the function 
cube as list.
• Asynchronous call and do not 

wait for the function to finish
• get() waits for the task to finish 

and retrieve the result.

import multiprocessing
import time

def cube(x):
return x**3

if __name__ == "__main__":
pool = multiprocessing.Pool(3)
start_time = time.perf_counter()
processes = [pool.apply_async(cube, args=(x,)) for x in range(1,1000)]
result = [p.get() for p in processes]
finish_time = time.perf_counter()
print(f"Program finished in {finish_time-start_time} seconds")
print(result)



joblib

• Simpler interface than multiprocessing
• Can be used for spawning multithreads

import time
from joblib import Parallel, delayed

def cube(x):
return x**3

start_time = time.perf_counter()
result = Parallel(n_jobs=3)(delayed(cube)(i) for i
in range(1,1000))
finish_time = time.perf_counter()
print(f"Program finished in {finish_time-
start_time} seconds")
print(result)



Numba - Motivation

classes. It turns out, however, that this naïve
code leaves much of the performance available
on modern computers “on the table.” The code
takes about 7 hours on a modern computer to
compute the matrix product, as shown by
the first row (version 1) in Table 1, achieving
only 0.0006% of the peak performance of the
machine. (Incidentally, Python 3 requires about
9 hours for the same computation.)
How can this naïve matrix-multiplication

code be performance engineered? Simply choos-
ing a more efficient programming language
speeds up this calculation dramatically. For
example, coding it in Java (version 2) produces
a speedupof 10.8×, and coding it in C (version 3)
produces an additional speedup of 4.4×, yield-
ing an execution time that is 47 times faster
than the original Python. This performance
improvement comes from reducing thenumber
of operations the program performs. In partic-
ular, Java and C avoid the extraneous work
that Python does under the hood to make
programming easier. The price for this per-
formance gain is programmer productivity:
Coding in C is more onerous than coding in
Python, and Java lies somewhere in between.
Although switching languages gains a speed-

up of almost 50×, tailoring the matrix code to
exploit specific features of the hardware makes
it run an additional 1300 times faster. This gain
comes from parallelizing the code to run on all
18 of the processing cores (version 4), exploiting
the processor’s memory hierarchy (version 5),
vectorizing the code (version 6), and using
Intel’s special Advanced Vector Extensions
(AVX) instructions (version 7). The final op-
timized code performs the task in only 0.41 s—
more than 60,000 times faster than the 7 hours
of the original Python code!
The point of this example is to illustrate the

potential gains available from performance
engineering naïvely coded software. In the par-
ticular case of matrix multiplication, a good
programmer could avoid this programming
effort by using optimized code from existing

software libraries. If she were writing code to
solve a new problem, however, shewould need
to optimize the code herself. And although not
every application can improve by nearly five
orders of magnitude through performance
engineering, most modern software systems
contain ample opportunity for performance
enhancement, especially if the codebase is
large enough.
During the post-Moore era, it will become

ever more important to make code run fast
and, in particular, to tailor it to the hardware
on which it runs. Modern computers provide
architectural features designed to make code
run fast. For example, versions 4 and 6 exploit
parallelism, which is the ability of computers
to perform multiple operations at the same
time. Version 5 exploits locality, which is the
computer’s ability to access data elements ef-
ficiently when they are collocated in memory
(spatial locality) or have been accessed re-
cently (temporal locality). Version 7 exploits
both parallelism and locality through care-
fully coordinated use of Intel’s AVX instructions.
As we shall see in the Hardware architecture
section, architectures are likely to become in-
creasingly heterogeneous, incorporating both
general-purpose and special-purpose circuitry.
To improve performance, programs will need
to expose more parallelism and locality for the
hardware to exploit. In addition, software per-
formance engineers will need to collaborate
with hardware architects so that new pro-
cessors present simple and compelling ab-
stractions that make it as easy as possible to
exploit the hardware.
Beyond the tailoring of software to hard-

ware is the question of bloat: Where does
software bloat come from? Certainly, some
bloat comes from trading off efficiency for
other desirable traits, such as coding ease, as
versions 1 to 3 of the matrix-multiplication
code illustrate. Bloat also comes from a failure
to tailor code to the underlying architecture,
as versions 4 to 7 show. But much software

bloat arises from software-development strat-
egies (13, 14), such as reduction.
The idea of reduction is this. Imagine that

you are a programmer who has been given a
problem A to solve (for example, distinguish-
ing between a yes or no spoken response).
You could write specialized code to solve A
directly, but instead, you might notice that
a related problem B has already been solved
(existing speech-recognition software that
understands many words, including yes and
no). It will take you far less effort to solve A
by converting it into a problem that can be
solved with the existing code for B, that is, by
reducing A to B.
Inefficiencies can arise both from the re-

duction itself (translating A to B) and from
the generality of B (the solution to B is not
tailored specifically to A). But the largest bloat
arises from the compounding of reductions:
reducing A to B, B to C, C to D, and so on.
Even if each reduction achieves an impressive
80% efficiency, a sequence of two independent
reductions achieves just 80% × 80% = 64%.
Compounding 20 more times yields an effi-
ciency of less than 1%, or 100× in bloat.
Because of the accumulated bloat created by

years of reductionist design during the Moore
era, there are great opportunities to make pro-
grams run faster. Unfortunately, directly solving
problem A using specialized software requires
expertise both in the domain of A and in per-
formance engineering, which makes the pro-
cess more costly and risky than simply using
reductions. The resulting specialized software
to solve A is often more complex than the soft-
ware that reduces A to B. For example, the fully
optimized code in Table 1 (version 7) is more
than 20 times longer than the source code for
the original Python version (version 1).
Indeed, simple code tends to be slow, and

fast code tends to be complicated. To create a
world where it is easy to write fast code, appli-
cation programmersmust be equipped with the
knowledge and skills to performance-engineer
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Table 1. Speedups from performance engineering a program that multiplies two 4096-by-4096 matrices. Each version represents a successive
refinement of the original Python code. “Running time” is the running time of the version. “GFLOPS” is the billions of 64-bit floating-point operations per
second that the version executes. “Absolute speedup” is time relative to Python, and “relative speedup,” which we show with an additional digit of precision,
is time relative to the preceding line. “Fraction of peak” is GFLOPS relative to the computer’s peak 835 GFLOPS. See Methods for more details.

Version Implementation Running time (s) GFLOPS Absolute speedup Relative speedup
Fraction

of peak (%)

1 Python 25,552.48 0.005 1 — 0.00
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

2 Java 2,372.68 0.058 11 10.8 0.01
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

3 C 542.67 0.253 47 4.4 0.03
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

4 Parallel loops 69.80 1.969 366 7.8 0.24
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

5 Parallel divide and conquer 3.80 36.180 6,727 18.4 4.33
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

6 plus vectorization 1.10 124.914 23,224 3.5 14.96
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

7 plus AVX intrinsics 0.41 337.812 62,806 2.7 40.45
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

RESEARCH | REVIEW

for i in xrange(4096): 
for j in xrange(4096): 

for k in xrange(4096): 
C[i][j] += A[i][k] * B[k][j] 

Leiserson, Charles E., Neil C. Thompson, Joel S. Emer, Bradley C. Kuszmaul, Butler W. Lampson, Daniel Sanchez, and Tao B. Schardl. "There’s plenty of room at the Top: 
What will drive computer performance after Moore’s law?." Science 368, no. 6495 (2020): eaam9744.



Numba: A JIT Compiler for Python

• An open-source, function-at-a-time compiler library for Python
• Compiler toolbox for different targets and execution models:
• Single-threaded CPU, multi-threaded CPU, GPU – (Openmp and 

CUDA)
• regular functions, “universal functions” (array functions), etc
• Combine ease of writing Python with speeds of Native code
• Opensource - BSD licensed (including GPU compiler) --

https://github.com/numba/numba
• Goal is to empower scientists who make tools for themselves and 

other scientists



Numba
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How does Numba work?

Python Function 
(bytecode) 

Bytecode 
Analysis

Functions  
Arguments

Numba IR 

Machine  
Code

Execute!

Type  
Inference

LLVM/NVVM JIT LLVM IR

Lowering

Rewrite IR

Cache

@jit
def do_math(a, b):
    …
>>> do_math(x, y)
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